51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于腦電時-空特征的深度學(xué)習(xí)失眠障礙檢測算法

Deep learning insomnia disorder detection algorithm based on EEG time-space characteristics

作者: 范藝晶  羅濤  李劍峰  楊子賢  
單位:北京郵電大學(xué)(北京 100876) <p>通信作者:羅濤。E-mail:[email protected]</p> <p>&nbsp;</p>
關(guān)鍵詞: 腦電信號;失眠障礙;卷積神經(jīng)網(wǎng)絡(luò);長短期記憶網(wǎng)絡(luò);雙向長短期記憶網(wǎng)絡(luò)  
分類號:R318.04 <p>&nbsp;</p>
出版年·卷·期(頁碼):2022·41·2(161-166)
摘要:

目的 現(xiàn)有失眠障礙檢測算法一般包括睡眠分期和失眠障礙識別兩個階段,存在差錯傳播問題,且計算量大。基于此,論文提出一種基于CNN-BiLSTM的深度學(xué)習(xí)算法,直接檢測失眠障礙。方法 首先結(jié)合睡眠腦電信號時空模式,根據(jù)電極分布構(gòu)造特征矩陣,再通過CNN表達(dá)其高級特征。隨后饋送至BiLSTM中挖掘睡眠階段間的時序信息,實現(xiàn)失眠障礙的直接檢測。最后按照6:2:2的比例隨機(jī)設(shè)置訓(xùn)練集、驗證集、測試集,用準(zhǔn)確率作為指標(biāo)評估算法模型的分類效果。結(jié)果 在ISRUC-Sleep公開數(shù)據(jù)集上進(jìn)行實驗,測試集準(zhǔn)確率為93.25%,可達(dá)到兩階段方法的準(zhǔn)確率水平。結(jié)論 本文設(shè)計的CNN-BiLSTM算法模型能夠有效檢測失眠障礙,將為輔助醫(yī)生高效地診斷失眠障礙提供可靠技術(shù)方法。

 

Objective The existing insomnia detection algorithms generally include two stages: sleep staging and insomnia recognition, which have the problem of error propagation and mass computing. Based on this, this paper proposes a CNN-BiLSTM algorithm for direct insomnia detection. Methods Based on the spatiotemporal pattern of sleep EEG signal, we first construct the feature matrix according to the electrode distribution and use CNN to extract advanced features. Then the feature vector is input into BiLSTM to extract time sequence information. So as to realize the direct insomnia detection. Finally, we randomly set the training set, validation set and test set according to the ratio of 6:2:2. The accuracy is used to evaluate the effect of the algorithm model. Results Experiments accuracy on ISRUC-Sleep public dataset is 93.25%, which can reach the accuracy level of two-stage method. Conclusions The CNN-BiLSTM algorithm in this paper can effectively detect insomnia, which will provide a reliable technical method for doctors to diagnose insomnia.

 

參考文獻(xiàn):

[1]? 顧平,何金彩,劉艷驕,等.中國失眠障礙診斷和治療指南[C]//中國睡眠研究會、黑龍江省中西醫(yī)結(jié)合學(xué)會.中國睡眠研究會東北睡眠工作委員會首屆學(xué)術(shù)年會暨黑龍江省中西醫(yī)結(jié)合學(xué)會睡眠分會第二屆學(xué)術(shù)年會會議手冊.哈爾濱:中國睡眠研究會,2019:77-86.

[2] 張冰濤. 基于生理信息的睡眠障礙識別方法及關(guān)鍵技術(shù)研究[D].蘭州:蘭州大學(xué),2019.

????Zhang BT. Research on sleep disorder recognition methods and key technologies based on physiological information[D]. Lanzhou: Lanzhou University,2019.

[3] Shahin M, Ahmed B, Hamida S, et al. Deep learning and insomnia: assisting clinicians with their diagnosis[J]. IEEE Journal of Biomedical and Health Informatics,2017,21(6):1546-1553.

[4] ?黃小利. 腦電全腦信號及其在睡眠中的應(yīng)用[D].重慶:西南大學(xué),2019.

Huang XL. EEG global signal and its application in sleep[D].?Chongqing: Southwest University,2019.

[5] 葉仙,胡潔,田畔,等.基于精細(xì)復(fù)合多尺度熵與支持向量機(jī)的睡眠分期[J].上海交通大學(xué)學(xué)報,2019,53(3):321-326.

Ye X, Hu J, Tian P, et al. Automatic sleep scoring based on refined composite multi-scale entropy and support vector machine[J]. Journal of Shanghai Jiaotong University,2019,53(3):321-326.

[6] 趙文瑞,李陳渝,陳軍君,等.失眠障礙與過度覺醒:來自靜息態(tài)腦電和睡眠腦電的證據(jù)[J].中國科學(xué):生命科學(xué),2020,50(3):270-286.

Zhao WR, Li CY, Chen JJ, et al. Insomnia disorder and hyperarousal: evidence from resting-state and sleeping EEG[J]. Scientia Sinica (Vitae), 2020,50(3):270-286.

[7] Hochreiter S, Schmidhuber J. Long short-term memory [J]. Neural Computation, 1997,9(8):1735-1780.

[8] Khalighi S, Sousa T, Santos JM, et al. ISRUC-sleep: a comprehensive public dataset for sleep researchers[J]. Computer Methods and Programs in Biomedicine, 2016, 124:180-192.

[9] Han H, Wang WY, Mao BH. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[M]// ICIC 2005: Advances in Intelligent Computing.?Heidelberg: Springer, Berlin, Heidelberg,?2005,3644: 878-887.

[10]Hinton GE, Srivastava N, Krizhevsky A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science, 2012,3(4): 212-223.

[11] Yang B, Liu H. Automatic identification of insomnia based on single-channel EEG labelled with sleep stage annotations[J]. IEEE Access, 2020,8:104281-104291.

[12]Li F, Yan R, Mahini R, et al. End-to-end sleep staging using convolutional neural network in raw single-channel EEG[J]. Biomedical Signal Processing and Control,2021,63:102203.

[13]Welch P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms[J]. IEEE Transactions on Audio and Electroacoustics,1967,15(2):70-73.

[14]王佳威. 腦電波信號的處理方法與應(yīng)用[D].北京: 北京郵電大學(xué),?2015.

????Wang JW. Preprocessing methods and applications based on EEG[D]. Beijing: Beijing University of Posts and Telecommunications,?2015.?

?

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]