51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
一種眼底圖像出血點的檢測算法

Algorithm of hemorrhages in fundus images

作者: 周夢穎  楊曉宇  邱媛  楊春蘭  劉冰 
單位:首都醫(yī)科大學附屬北京同仁醫(yī)院(北京 100730) <p>北京工業(yè)大學環(huán)境與生命學部(北京 100124)</p> <p>北京工業(yè)大學校醫(yī)院眼科(北京 100124)</p> <p>通信作者:周夢穎。E-mail:[email protected]</p> <p>&nbsp;</p>
關(guān)鍵詞: 糖尿病視網(wǎng)膜病變;眼底圖像;出血點檢測;灰度檢測;形態(tài)學重構(gòu)  
分類號:R318.04
出版年·卷·期(頁碼):2022·41·3(255-259)
摘要:

目的  提出一種基于灰度檢測和形態(tài)學重構(gòu)的出血點(hemorrhages , HA)自動檢測算法,以提高糖尿病視網(wǎng)膜病變(diabetic retinopathy,DR)眼底圖像的質(zhì)量和靈敏度。方法 對預處理后的圖像進行灰度閾值分割,保留并提取出HA和血管特征,再利用形態(tài)學方法去除血管并消除圖像邊緣假陽性區(qū)域,形成新算法。用新算法測試公開數(shù)據(jù)庫DIARETED1中的50幅圖像(45幅HA病變圖像,5幅正常圖像),與專家人工判斷結(jié)果進行比對驗證。結(jié)果 該算法的靈敏度(sensitivity,SE)和特異性(specificity,SP)分別為93.33%和80.00%。結(jié)論 該算法可提升眼底圖像質(zhì)量和靈敏度,在不借助醫(yī)生經(jīng)驗的條件下完成快速判定,很大程度提高了篩查的效率。

 

Objective  To propose a hemorrhages (HA) automatic detection algorithm based on gray level detection and morphological reconstruction ,and to improve the quality and sensitivity of diabetes diabetic retinopathy (DR) fundus images. Methods The preprocessed image was segmented by gray threshold, the HA and vascular features were retained and extracted, and then the morphological method was used to remove the blood vessels and eliminate the false-positive area at the edge of the image to form a new algorithm. The new algorithm was used to test 50 images (45 HA lesion images and 5 normal images) in the public database DIARETED1, and compared with the expert manual judgment results for verification. Results The sensitivity  and specificity of this algorithm were 93.33% and 80.00%, respectively.Conclusions This algorithm can improve the quality and sensitivity of fundus images, and can be used to complete rapid judgment without the help of doctors' experience, which greatly improve the efficiency of screening. 

參考文獻:

[1]陳萌夢. 糖尿病視網(wǎng)膜圖像自動篩查和分析的研究[D].重慶:重慶醫(yī)科大學, 2014.

Chen MM. Automatic screening and analysis study on diabetic retinopathyimages[D].Chongqing:Chongqing Medical University, 2014.

[2]Soares JVB, Leandro JJG, Cesar JrRM, et al. Retinal vessel segmentation using the2-DGabor wavelet and supervised classification[J]. IEEE Transactions on Medical?? Imaging, 2006,25(9): 1214-1222.

[3]Fleming AD, Goatman KA,Philip S, et al. Automaticdetection of retinalanatomytoassist diabetic retinopathy screening [J]. Physics in Medicine &Biology. 2007, 52(2):331-345.

[4]DevarajD, Nagaveena. Detection of red lesion in diabetic retinopathy using adaptivethresholding method [J]. International Journal of Engineering Research & Technology, 2013,2(4):1889-1892.

[5]Bharali P, Medhi JP, Nirmala SR. Detection of hemorrhages in diabetic retinopathy??????? analysisusing color fundus images[C]. IEEE International Conference on Recent Trends in Information Systems. India:IEEE,2015: 237-242.

[6]Gardner GG, Keating D, Williamson T H, et al. Automatic detection of diabetic retinopathy using an artificial neural network: A screening tool[J]. British Journal of Ophthalmology, 1996, 80(11): 940-944.

[7]Karkuzhali S, Manimegalai D. Retinal hemorrhages segmentation using improvedtoboggan segmentation algorithm in diabetic retinopathy images[J]. Biomedical Research, 2018, (1): 1.

[8]Sreng S, Maneerat N, Isarakorn D, et al. Automatic hemorrhages detectionbased on fundus?????? images[C].InternationalConferenceon InformationTechnology and Electrical Engineering,Thailand: IEEE, 2015:253-257.

[9]Nutnaree K, Smith G, Bunyarit U. Automated retinal hemorrhage detection usingmorphological top hat and rule-based classification [C]. 3rd International Conference onIntelligent Computational Systems. Singapore: IEEE, 2013: 39-43

[10]Adarsh P, Jeyakumari D. Multiclass SVM-Based Automated DiagnosisofDiabeticRetinopathy[C].International Conference on Communications & Signal Processing.India: IEEE , 2013:206-210.

[11]盧旭.視網(wǎng)膜眼底圖像中出血和血管檢測算法研究[D].上海:上海交通大學, 2019.

Lu X.Research on hemorrhage and blood vessel detection in fundus images[D]. Shanghai:ShanghaiJiao Tong University, 2019

[12] Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. The Journal of the American Medical Association, 2016, 316(22):2402-2410.

[13] Van Grinsven M, Van Ginneken B, Hoyng C, et al. Fast convolutional neural network training???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? using selective data sampling: Application to hemorrhage detection in color fundus images[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1273-1284.

[14]肖志濤,趙北方,張芳,等.基于k均值聚類和自適應模板匹配的眼底出血點檢測方法[J].中國生物醫(yī)學工程學報,2015,34( 3) : 264-271.

Xiao ZT, Zhao BF, Zhang F, et al. Hemorrhages detection in fundus image based on k-means clustering and adaptive template matching[J]. Chinese Journal of Biomedical Engineering, 2015,34( 3) : 264-271.

[15] Zhou L, Li P, Yu Q,et al. Automatic hemorrhage detection in color fundus images based on gradual removal of vascular branches[C]. InternationalConference on Image Processing. USA: IEEE, 2016.

[16] Sathananthavathi V,Indumathi G,Rajalakshmi R.Abnormalities detection inretinal fundus images[C]. International Conference on Inventive Communication &Computational Technologies. India:IEEE, 2017.

[17]Kauppi T, Kalesnykiene V, Kamarainen JK, et al. DIARETDB1 diabetic retinopathy database and evaluation protocol[J]. Medical Image Understanding and Analysis, 2007, 61: 1-10.

[18] Javitt JC, Canner JK, Frank RG, et al. Detecting and treating retinopathy in patients with? TypeⅠdiabetes mellitus: A healthy policy model[J]. Ophthalmology,1990, 97(4): 483-495.

?

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]