51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
天璣骨科手術(shù)機器人高精度工作區(qū)域研究

The high precision working area of Tianji orthopaedic robotic system

作者: 范明星  施嶄  張琦  王令瓏  房彥名  田偉 
單位:北京積水潭醫(yī)院脊柱外科(北京 100035) <p>首都醫(yī)科大學(xué)燕京醫(yī)學(xué)院(北京 101300)</p> <p>通信作者:田偉。E-mail:[email protected]</p> <p>&nbsp;</p>
關(guān)鍵詞: 骨科手術(shù)機器人;機器人輔助手術(shù);精度;光學(xué)導(dǎo)航;工作區(qū)域  
分類號:R318.04&nbsp;
出版年·卷·期(頁碼):2022·41·3(266-270)
摘要:

目的 研究天璣骨科手術(shù)機器人的高精度工作區(qū)域,提高機器人輔助手術(shù)精度。方法 設(shè)置天璣骨科手術(shù)機器人的光學(xué)導(dǎo)航系統(tǒng)位置,使其與精度測試模型所處實驗平面垂直距離保持為1.5m,以精度測試模型所處位置為工作區(qū)域中心O,建立以O(shè)點為原點的平面直角坐標系,在平面內(nèi)緩慢移動精度測試模型,當(dāng)其剛好不能被光學(xué)導(dǎo)航系統(tǒng)追蹤時記為到達工作區(qū)域邊界,記錄邊界范圍。使用三坐標測量儀測量原點O與邊界間不同位置點的機器人定位精度,并比較不同位置點間的精度差異。結(jié)果 天璣骨科手術(shù)機器人在光學(xué)導(dǎo)航系統(tǒng)距離手術(shù)區(qū)域1.5 m時的工作區(qū)域為長1263 mm、寬878 mm的長方形。機器人在各象限中心點間的定位精度無統(tǒng)計學(xué)差異(P=0.13),但定位精度距離視野中心距離增加將導(dǎo)致定位精度降低(H=103.39,P<0.001),箱式圖對比分析發(fā)現(xiàn)當(dāng)操作距離距離視野中心距離大于400 mm時精度顯著變差。結(jié)論 天璣骨科手術(shù)機器人的工作區(qū)域為長方形,應(yīng)盡量保持手術(shù)區(qū)域位于視野中心400 mm范圍內(nèi),從而獲得更穩(wěn)定的手術(shù)精度。

 

Objective  To explore the high precision working area of TianJi orthopaedic robotic system and improve the accuracy of robot assisted surgery. Methods  We set the position of the optical navigation system of the orthopaedic robot to keep vertical distance from experimental plane where the precision testing model was located at 1.5 m. We marked the position of the precision testing model as point O, which was the center of the work area, and establish a plane rectangular coordinate system. Move the precision testing model in the plane, record the boundary of the working area and mark the boundary points. A three-coordinate measuring instrument was used to measure the accuracy of orthopaedic surgery robotic system at different measuring points in the working area and the accuracy was compared. Results The working area was a rectangular area with the length of 1263 mm and the width of 878 mm at 1.5 m away from the optical navigation system. There was no statistical difference in the accuracy of the orthopaedic robotic system among the center points of each quadrant (P=0.13), however, the accuracy was decreased with the increasing of distance away from the center point of the working area (H=103.39,P<0.001). Comparative analysis of box diagram showed that the accuracy were worse at 400mm away from the center point of the working area. Conclusions The working area of the Tianji orthopaedic surgical robot system is a rectangular area. To obtain more stable accuracy, more attention should be paid to keep the operation area within 400mm of the working area.

 

參考文獻:

[1] Hicks JM, Singla A, Shen FH, et al.Complications of pedicle screw fixation in scoliosis surgery: a systematic review[J]. Spine (Phila Pa 1976) ,2010,35(11):E465-470.

[2] Gautschi OP, Schatlo B, Schaller K,et al. Clinically relevant complications related to pedicle screw placement in thoracolumbar surgery and their management: a literature review of 35,630 pedicle screws[J]. Neurosurg Focus,2011,31(4):E8.

[3] Han XG,Tian W, Liu YJ,et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial[J]. Journal of Neurosurgery,2019,30(5):615-620.

[4] Le XF, Shi Z, Wang QL,et al. Rate and risk factors of superior facet joint violation during cortical bone trajectory screw placement: a comparison of robot-assisted approach with a conventional technique[J]. Orthopaedic Surgery,2020,12(1):133-140.

[5] Tian W, Wang H, Liu YJ. Robot-assisted anterior odontoid screw fixation: a case report[J]. Orthopaedic Surgery,2016,8(3):400-404.

[6] 張維軍. 光學(xué)導(dǎo)航引導(dǎo)的手術(shù)機器人系統(tǒng)設(shè)計[J].中國醫(yī)療設(shè)備,2017,11(11):40-43.

Zhang WJ. Design of an optical navigation guided surgical robot system[J].China Medical Devices ,2017,11 (11):40-43.

[7] Tian W, Liu YJ,Liu B,et al. Technical committee on medical robot engineering of chinese society of biomedical, c. technical consulting committee of national robotic orthopaedic surgery application, guideline for thoracolumbar pedicle screw placement assisted by orthopaedic surgical robot[J]. Orthopaedic Surgery ,2019,11(2):153-159.

[8] Wang JL, Ren H., Meng MQH. A preliminary study on surgical instrument tracking based on multiple modules of monocular pose estimation[C].2014 IEEE 4th Annual International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (Cyber). Hong Kong:IEEE,2014:146-151.

[9] Elfring R, de la Fuente M,Radermacher K. Assessment of optical localizer accuracy for computer aided surgery systems[J]. Computer Aided Surgery,2010,15(1-3) (2010) :1-12.

[10] Wei Z, Zhao K. Structural parameters calibration for binocular stereo vision sensors using a double-sphere target[J].Sensors (Basel) ,2016,16(7):1074.

[11] Jun CH, Decker R,Stoianovici D. Using optical tracking for kinematic testing of medical robots[J].International Journal of Medical Robotics and Computer Assisted Surgery ,2018,14(2):e1890.

[12] Ewurum CH,Guo Y, Pagnha S,et al.Surgical navigation in orthopedics: workflow and system review[J]. Advances In Experimental Medicine And?Biology,2018,1093 :47-63.

[13] Engelhardt S, De Simone R, Al-Maisary S, et al.Accuracy evaluation of a mitral valve surgery assistance system based on optical tracking[J]. International Journal of Computer Assisted Radiology & Surgery,2016,11(10):1891-904.

[14] Overley SC, Cho SK, Mehta AI,et al. Navigation and robotics in spinal surgery: where are we now? [J].Neurosurgery,2017,80(3):S86-S99.

[15] Wiles AD,Thompson DG,Frantz DD. Accuracy assessment and interpretation for optical tracking systems [J]. Medical Imaging 2004: Visualization, Image-Guided Procedures, and Display,2004,5367 :421-432.

?

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]