51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
天璣Ⅱ機器人輔助胸腰椎椎弓根螺釘內(nèi)固定術(shù)的臨床應(yīng)用

Clinical application of 2nd generation TiRobot-assisted thoracolumbar pedicle screw fixation

作者: 閻凱  張琦  劉波  何達  劉亞軍  田偉 
單位:北京積水潭醫(yī)院脊柱外科,骨科機器人技術(shù)北京市重點實驗室(北京 100035) <p>通信作者:田偉。E-mail:[email protected]</p> <p>&nbsp;</p>
關(guān)鍵詞: 手術(shù)機器人;胸腰椎;椎弓根螺釘;內(nèi)固定  
分類號:R318.01
出版年·卷·期(頁碼):2022·41·3(297-301)
摘要:

目的 分析天璣Ⅱ機器人輔助胸腰椎椎弓根螺釘內(nèi)固定術(shù)的臨床效果,為天璣Ⅱ機器人在脊柱外科手術(shù)的臨床應(yīng)用提供依據(jù)。方法 天璣Ⅱ骨科手術(shù)機器人優(yōu)化了主控觸屏、機械臂末端和機械臂示蹤器。本研究分析2020年12月至2021年5月期間在北京積水潭醫(yī)院實施天璣Ⅱ機器人輔助胸腰椎椎弓根螺釘內(nèi)固定術(shù)20例患者的病例資料,使用圖像融合法測量導(dǎo)針偏差,使用術(shù)后影像測量螺釘準確性,同時記錄手術(shù)時間、術(shù)中出血量、術(shù)后平均住院時間和并發(fā)癥情況,評估天璣Ⅱ機器人系統(tǒng)的臨床應(yīng)用效果。結(jié)果 20例機器人輔助手術(shù)均順利完成,共置入了92枚椎弓根螺釘。導(dǎo)針的入點偏差為1.44 (0.93, 1.93) mm,止點偏差為1.47 (1.02, 2.22) mm,綜合偏差為1.55 (0.96, 1.99) mm。軸位角度偏差為1.90 (1.40, 2.20)°,矢狀位角度偏差為1.00 (0.60, 1.20)°。螺釘位置優(yōu)秀率為90.2%,螺釘位置優(yōu)良率為100%。手術(shù)時間為(206±60)min,術(shù)中出血量為200 (113, 200) mL,術(shù)后住院時間為5 (4, 6) d,未出現(xiàn)圍手術(shù)期并發(fā)癥。結(jié)論 天璣Ⅱ機器人系統(tǒng)較前一代手術(shù)機器人進行了多項升級,有助于更加準確、高效地完成胸腰椎椎弓根螺釘內(nèi)固定術(shù)。

Objective  To investigate the clinical outcome of 2nd generation TiRobot-assisted thoracolumbar pedicle screw fixation.,and to provide evidence for the clinical application of 2nd generation TiRobot in spine surgery. Methods The 2nd generation TiRobot optimizes the main control touch screen, the remote end and the tracker of the robotic arm. A total of 20 patients undergone 2nd generation TiRobot-assisted thoracolumbar pedicle screw fixation at Beijing Jishuitan Hospital from December 2020 to May 2021 were analyzed. By measuring the guide-wire deviation (based on image fusion), screw accuracy (based on postoperative image), and perioperative data (operation time, intraoperative blood loss, postoperative hospital stay and complications), the clinical application of the 2nd generation TiRobot system was evaluated. Results All 20 robot-assisted surgeries were completed successfully with a total of 92 pedicle screws inserted. The entry point deviation of the guide-wire was 1.44 (0.93, 1.93) mm, the end point deviation was 1.47 (1.02, 2.22) mm, and the mean deviation for each screw was 1.55 (0.96, 1.99) mm. The axial angular deviation was 1.90 (1.40, 2.20)°, and the sagittal angular deviation was 1.00 (0.60, 1.20)°. The perfect rate of screw position was 90.2%, and the clinically acceptable rate was 100%. The operation time was 206±60 minutes, the intraoperative blood loss was 200 (113, 200) mL, and the postoperative hospital stay was 5 (4, 6) days. There were no perioperative complications. Conclusions The 2nd generation TiRobot system, undergone numerous upgrades compared with its previous generation, helps to complete the thoracolumbar pedicle screw internal fixation more accurately and efficiently.

參考文獻:

[1] Vaccaro AR, Garfin SR. Pedicle-screw fixation in the lumbar spine[J]. Journal of the American Academy of Orthopaedic Surgeons, 1995, 3(5): 263-274.

[2] Gelalis ID, Paschos NK, Pakos EE, et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques[J]. European Spine Journal, 2012, 21(2): 247-255.

[3] Shin BJ, James AR, Njoku IU, et al. Pedicle screw navigation: a systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion[J]. Journal of Neurosurgery: Spine, 2012, 17(2): 113-122.

[4] Coe JD, Arlet V, Donaldson W, et al. Complications in spinal fusion for adolescent idiopathic scoliosis in the new millennium. A report of the scoliosis research society morbidity and mortality committee[J]. Spine, 2006, 31(3): 345-349.

[5] Jutte PC, Castelein RM. Complications of pedicle screws in lumbar and lumbosacral fusions in 105 consecutive primary operations[J]. European Spine Journal, 2002, 11(6): 594-598.

[6] 田偉. 醫(yī)用機器人的發(fā)展現(xiàn)狀[J]. 中華醫(yī)學(xué)雜志, 2021, 101(5): 374-378.

[7] Tian W. Robot-assisted posterior C1-2 transarticular screw fixation for atlantoaxial instability: a case report[J]. Spine, 2016, 41 (Suppl 19): B2-B5.

[8] Tian W, Wang H, Liu Y J. Robot-assisted anterior odontoid screw fixation: a case report[J]. Orthopaedic Surgery, 2016, 8(3): 400-404.

[9] Han X, Tian W, Liu Y, et al. Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial[J]. Journal of Neurosurgery: Spine, 2019, 30(5): 615–622.

[10] Zhang Q, Han XG, Xu YF, et al. Robot-assisted versus fluoroscopy-guided pedicle screw placement in transforaminal lumbar interbody fusion for lumbar degenerative disease[J]. World Neurosurgery, 2019, 125: e429-e434.

[11] Zhang Q, Xu Y F, Tian W, et al. Comparison of superior-level facet joint violations between robot-assisted percutaneous pedicle screw placement and conventional open fluoroscopic-guided pedicle screw placement[J]. Orthopaedic Surgery, 2019, 11(5): 850-856.

[12] Fan M, Liu Y, He D, et al. Improved accuracy of cervical spinal surgery with robot-assisted screw insertion: a prospective, randomized, controlled study[J]. Spine, 2020, 45(5): 285-291.

[13] Tian W, Fan M, Zeng C, et al. Telerobotic spinal surgery based on 5G network: The first 12 cases[J]. Neurospine, 2020, 17(1): 114-120.

[14] Yongqi L, Dehua Z, Hongzi W, et al. Minimally invasive versus conventional fixation of tracer in robot-assisted pedicle screw insertion surgery: a randomized control trial[J]. BMC Musculoskeletal Disorders, 2020, 21(1): 208.

[15] Tian W, Liu YJ, Liu B, et al. Guideline for thoracolumbar pedicle screw placement assisted by orthopaedic surgical robot[J]. Orthopaedic Surgery, 2019, 11(2): 153-159.

[16] Gertzbein S D, Robbins S E. Accuracy of pedicular screw placement in vivo[J]. Spine, 1990, 15(1): 11-4.

[17] Hyun SJ, Kim KJ, Jahng TA, et al. Minimally invasive robotic versus open fluoroscopic-guided spinal instrumented fusions: a randomized controlled trial[J]. Spine, 2017, 42(6): 353-358.

[18] Lonjon N, Chan-Seng E, Costalat V, et al. Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis[J]. European Spine Journal, 2016, 25(3): 947-955.

[19] Lee N J, Zuckerman S L, Buchanan I A, et al. Is there a difference in screw accuracy, robot time per screw, robot abandonment, and radiation exposure between the Mazor X and the renaissance? A propensity-matched analysis of 1179 robot-assisted screws[J]. Global Spine Journal, 2021: 21925682211029867.

[20] Le X, Tian W, Shi Z, et al. Robot-assisted versus fluoroscopy-assisted cortical bone trajectory screw instrumentation in lumbar spinal surgery: a matched-cohort comparison[J]. World Neurosurgery, 2018, 120: e745-e751.

[21] Feng S, Tian W, Sun Y, et al. Effect of robot-assisted surgery on lumbar pedicle screw internal fixation in patients with osteoporosis[J]. World Neurosurgery, 2019, 125: e1057-e1062.

[22] Feng S, Tian W, Wei Y. Clinical effects of oblique lateral interbody fusion by conventional open versus percutaneous robot-assisted minimally invasive pedicle screw placement in elderly patients[J]. Orthopaedic Surgery, 2020, 12(1): 86-93.

?

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]