51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
腦電與功能近紅外光譜技術(shù)在腦機(jī)接口中的應(yīng)用

Applications of EEG and fNIRS in brain computer interface

作者: 高宇航  司娟寧  何江弘  李夢(mèng) 
單位:北京信息科技大學(xué)儀器科學(xué)與光電工程學(xué)院(北京 100192) <p>解放軍總醫(yī)院第七醫(yī)學(xué)中心神經(jīng)外科(北京 100700)</p> <p>通信作者:司娟寧。E-mail:&nbsp; [email protected]</p> <p>&nbsp;</p>
關(guān)鍵詞: 腦-機(jī)接口;人機(jī)交互;腦電;功能近紅外光譜;多模態(tài)信息融合 
分類號(hào):R318.04&nbsp;
出版年·卷·期(頁碼):2022·41·3(318-326)
摘要:

腦-機(jī)接口(brain-computer interface, BCI)技術(shù)是一種多學(xué)科交叉融合的新型人機(jī)交互方式,通過解碼大腦的活動(dòng)信息來控制外部設(shè)備,從而實(shí)現(xiàn)人腦與外界的信息交互,在神經(jīng)科學(xué)、康復(fù)醫(yī)療、人工智能等領(lǐng)域應(yīng)用廣泛。近年來隨著科技進(jìn)步,多尺度(宏觀、介觀、微觀)腦成像技術(shù)不斷涌現(xiàn),如腦電圖(electroencephalogram,EEG)、功能磁共振成像(functional magnetic resonance imaging,fMRI)、功能近紅外光譜(functional near-infrared spectroscopy,fNIRS),極大地推動(dòng)了BCI的發(fā)展。本文綜述了EEG、fNIRS及EEG-fNIRS多模態(tài)融合技術(shù)在BCI中的應(yīng)用現(xiàn)狀,歸納各技術(shù)的研究成果,探討其局限性和改進(jìn)方式,并對(duì)未來BCI的發(fā)展做了展望。

Brain-computer interface (BCI) technology is a new type of human-computer interaction technique with interdisciplinary integration, which controls external devices by decoding brain activity information, thereby realizing information interaction between the human brain and the outside world. BCI is widely used in neuroscience, rehabilitation medicine, artificial intelligence and other fields. In recent years, with the progress of neuroimaging technology, multi-scale (macro, mesoscopic and micro) brain imaging technologies,such as electroencephalogram (EEG), functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS), have been constantly emerging, and have greatly promoted the development of BCI. This paper reviews the application status of EEG, fNIRS and EEG-fNIRS multimodal fusion technology in BCI, summarizes the research achievements of each technology and discusses their limitations and improvement methods. Finally, the future development direction of BCI research is prospected.

 

參考文獻(xiàn):

[1] Vidal J J. Real-time detection of brain events in EEG[J]. Proceedings of the IEEE, 1977, 65(5): 633-641.

[2] Lazeyras F O, Blanke O, Perrig S, et al. EEG-triggered functional MRI in patients with pharmacoresistant epilepsy[J]. Journal of Magnetic Resonance Imaging, 2015, 12(1): 177-185.

[3] 黃帥, 杜云梅, 梁會(huì)營(yíng), 等. 基于EEG的癲癇發(fā)作預(yù)測(cè)當(dāng)前研究與進(jìn)展[J]. 中國(guó)數(shù)字醫(yī)學(xué), 2019, 14(3):73-76.

Huang S, Du YH, Liang HY, et al. Current research and development of epileptic seizure prediction based on EEG [J]. 中國(guó)數(shù)字醫(yī)學(xué), 2019, 14(3):73-76.

[4] 吳迪, 王紅新, 郝小生, 等. 剝奪睡眠EEG與腦電Holter對(duì)伴中央-顳區(qū)棘波的兒童良性癲癇診斷應(yīng)用比較[J]. 吉林醫(yī)學(xué), 2012, 33(13):2744-2745.

Wu D, Wang HX, Hao XS, et al. Comparison of sleep deprivation EEG and EEG Holter in the diagnosis of benign epilepsy in children with center-temporal spines[J]. Jilin medical, 2012, 33(13):2744-2745.

[5] Mishuhina V, Jiang X. Feature Weighting and Regularization of Common Spatial Patterns in EEG-Based Motor Imagery BCI[J]. IEEE Signal Processing Letters, 2018, 25(6):783-787.

[6] 許學(xué)添, 蔡躍新. 基于圖卷積網(wǎng)絡(luò)的運(yùn)動(dòng)想象識(shí)別[J/OL]. 計(jì)算機(jī)工程與應(yīng)用, http://kns.cnki.net/kcms/detail/11.2127. TP.20210119.1330.014.html, 2021-3-5.

Xu XT, Cai YX. Motion Imagination Recognition Based on Graph Convolutional Network [J/OL]. Computer Engineering and? Applications, http://kns.cnki.net/kcms/detail/11.2127.TP.20210119.1330.014.html, 2021-3-5.

[7] Holz E M, Botrel L, Kaufmann T, et al. Long-Term Independent Brain-Computer Interface Home Use Improves Quality of Life of a Patient in the Locked-In State: A Case Study[J]. Arch Phys Med Rehabil, 2015, 96(3): S16-S26.

[8] Boonyakitanont P, Lek-Uthai A, Chomtho K, et al. A review of feature extraction and performance evaluation in epileptic seizure detection using EEG[J]. Biomedical Signal Processing and Control, 2020, 57(4): 1746-1762.

[9] 張錦, 劉熔, 田森, 等. 面向癲癇腦電的簡(jiǎn)化深度學(xué)習(xí)模型[J]. 國(guó)防科技大學(xué)學(xué)報(bào), 2020, 42(6): 106-111.

Zhang J, Liu R, Tian S, et al. A simplified deep learning model for epileptic EEG [J]. Journal of National University of Defense Technology, 2020, 42(6): 106-111.

[10] Gaur P, Pachori R B, Wang H, et al. A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry[J]. Expert Systems with Applications, 2018, 95(APR.): 201-211.

[11] 付榮榮, 田永勝, 鮑甜恬. 基于稀疏共空間模式和Fisher判別的單次運(yùn)動(dòng)想象腦電信號(hào)識(shí)別方法[J]. 生物醫(yī)學(xué)工程學(xué)雜志, 2019, 36(6): 911-915,923.

Fu RR, Tian YS, Bao TT. A Single Motor Imagination EEG Signal Recognition Method Based on Sparse Common Space Pattern and Fisher Discriminant[J]. Journal of Biomedical Engineering, 2019, 36(6): 911-915,923.

[12] Pan J, Xie Q, Huang H, et al. Emotion-Related Consciousness Detection in Patients With Disorders of Consciousness Through an EEG-Based BCI System[J]. Front Hum Neurosci, 2018, 12(6):198-209.

[13] Talukdar U, Hazarika S M, Gan J Q. Adaptive feature extraction in EEG-based motor imagery BCI: tracking mental fatigue[J]. Journal of neural engineering, 2020, 17(1): 016020.1-016020.16.

[14] Sakurada T, Hirai M, Watanabe E. Individual optimal attentional strategy during implicit motor learning boosts frontoparietal neural processing efficiency: A functional near-infrared spectroscopy study[J]. Brain Behav, 2019, 9(1): e01183.

[15] Li C, Su M, Xu J, et al. A Between-Subject fNIRS-BCI Study on Detecting Self-Regulated Intention During Walking[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(2): 531-540.

[16] 李玉, 熊馨, 李昭陽,等. 基于功能性近紅外光譜識(shí)別右腳三種想象動(dòng)作研究[J]. 生物醫(yī)學(xué)工程學(xué)雜志, 2020, 37(2):262-270.

Li Y, Xiong X, Li ZY, et al. Study on Recognition of Three Imaginary Movements of Right Foot Based on Functional Near Infrared Spectroscopy[J]. Journal of Biomedical Engineering, 2020, 37(2):262-270.

[17] Arivudaiyanambi J, Mohan S, Chhabra H, et al. Investigation of deep convolutional neural network for classification of motor imagery fNIRS signals for BCI applications[J]. Biomedical Signal Processing and Control, 2020, 62(4):102-133.

[18] Chaudhary U, Xia B, Silvoni S, et al. Correction: Brain-Computer Interface-Based Communication in the Completely Locked-In State[J]. Plos Biology, 2018, 16(12): e3000089.

[19] Abdalmalak A, Milej D, Norton L, et al. Single-session communication with a locked-in patient by functional near-infrared spectroscopy[J]. Neurophotonics, 2017, 4(4):040501.

[20] 阮盛捷, 謝宏. 基于功能近紅外信號(hào)的腦機(jī)接口(BCI)在肌萎縮性側(cè)索硬化癥(ALS)患者交流中的研究[J]. 現(xiàn)代計(jì)算機(jī)(專業(yè)版), 2018, 617(17): 5-9.

Ruan SJ, Xie H. Brain computer interface (BCI) based on functional near-infrared signals in the communication of patients with amyotrophic lateral sclerosis (ALS)[J]. Modern Computer (Professional), 2018, 617(17): 5-9.

[21] Borgheai S B, Mclinden J, Zisk A H, et al. Enhancing Communication for People in Late-Stage ALS Using an fNIRS-Based BCI System[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(5): 1198-1207.

[22] Pinti P, Tachtsidis I, Hamilton A, et al. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience[J]. Ann N Y Acad Sci, 2020, 1464(1): 5-29.

[23] J?bsis F F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters [J]. Science, 1977, 198(4323): 1264-1267.

[24] Li C, Zhang M, Ding K, et al. Effect of English learning experience on young children's prefrontal cortex functioning for attentional control: An fNIRS study.[C]// 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2019, 2019:4832-4835.

[25] 鄭玉甫, 許敏鵬, 明東. 腦-機(jī)接口操控效果差異及其預(yù)測(cè)研究綜述[J]. 中國(guó)生物醫(yī)學(xué)工程學(xué)報(bào), 2018, 37(6): 749-755.

Zheng YF, Xu MP, Ming D. A review of research on differences and prediction of brain-computer interface manipulation effects[J]. Chinese Journal of Biomedical Engineering, 2018, 37(6): 749-755.

[26] Verma P , Heilinger A , Reitner P , et al. Performance Investigation of Brain-Computer Interfaces that Combine EEG and fNIRS for Motor Imagery Tasks[C]// 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE, 2019, 259-263.

[27] Sargent A , Heiman-Patterson T , Feldman S , et al. Mental Fatigue Assessment in Prolonged BCI Use Through EEG and fNIRS[J]. Neuroergonomics, 2018, 5(3):315-316.

[28] Nguyen T, Ahn S, Jang H, et al. Utilization of a combined EEG/NIRS system to predict driver drowsiness[J]. Entific Reports, 2017, 7(1):43933.

[29] 熊馨, 伏云發(fā), 張夏冰, 等. 一種多模態(tài)腦電和近紅外光譜聯(lián)合采集頭盔設(shè)計(jì)及實(shí)驗(yàn)研究[J]. 生物醫(yī)學(xué)工程學(xué)雜志, 2018, 35(2): 290-296.

Xiong X, Fu YF, Zhang XB, et al. Design and Experimental Study of a Helmet Collected by Multi-modal EEG and Near Infrared Spectra[J]. Journal of Biomedical Engineering, 2018, 35(2): 290-296.

[30] Chiarelli A M, Croce P, Merla A, et al. Deep Learning for hybrid EEG-fNIRS Brain-Computer Interface: application to Motor Imagery Classification[J]. Journal of Neural Engineering, 2018, 15(3): 036028.1-036028.12.

[31] Dehais F , Dupres A , Flumeri G D , et al. Monitoring Pilot's Cognitive Fatigue with Engagement Features in Simulated and Actual Flight Conditions Using an Hybrid fNIRS-EEG Passive BCI[C]// 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2018.

[32] Sereshkeh A R, Yousefi R, Wong A T, et al. Development of a ternary hybrid fNIRS-EEG brain–computer interface based on imagined speech[J]. Brain-Computer Interfaces, 2019, 6(2):1-13.

[33] Gentile E, Brunetti A, Ricci K, et al. Mutual interaction between motor cortex activation and pain in fibromyalgia: EEG-fNIRS study[J]. PLoS ONE, 2020, 15(1): e0228158.

[34] Morioka H, Kanemura A, Morimoto S, et al. Decoding spatial attention by using cortical currents estimated from electroencephalography with near-infrared spectroscopy prior information [J]. Neuroimage, 2014, 90:128-139.

[35] Sangtae A, Thien N, Hyojung J, et al. Exploring Neuro-Physiological Correlates of Drivers' Mental Fatigue Caused by Sleep Deprivation Using Simultaneous EEG, ECG, and fNIRS Data[J]. Frontiers in Human Neuroence, 2016, 10(848):219-233.

?

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]