51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
可穿戴設備在心血管疾病監(jiān)測中的應用

Application of wearable device in disease monitoring

作者: 周新圓 
單位:首都醫(yī)科大學北京安貞醫(yī)院(北京 100029) <p>通信作者:周新圓。E-mail:[email protected]</p> <p>&nbsp;</p>
關鍵詞: 可穿戴設備;心血管疾病;實時監(jiān)測;智能分析;健康評估  
分類號:R318.6
出版年·卷·期(頁碼):2022·41·3(326-329)
摘要:

可穿戴設備具有快速信息獲取、實時信息分析和智能呈現(xiàn)等優(yōu)點,能夠彌補醫(yī)療行業(yè)人工不足的問題,從而使其在現(xiàn)今醫(yī)療領域迅速發(fā)展。通過傳感器獲取重要生理信息,并利用集成芯片進一步實時分析能夠更高效地評估患者的健康狀況。根據(jù)可穿戴設備近年來的發(fā)展趨勢,本文主要綜述了3種常見的可穿戴設備在醫(yī)療,特別是心血管疾病監(jiān)測中的研究現(xiàn)狀,最后對其未來的可能發(fā)展進行了分析和展望。

 

Wearable devices have developed dramatically in medical field, recently. The characteristics, such as feasible collection, real-time analysis and intelligent presentation can meet the requirement of more labors in health care field. The necessary physiological data gathered by wearable sensors, were immediately analyzed by integrated chip that offer a highly efficient way to evaluate the real-time condition of patients. On the basis of developmental direction of wearable devices, we summarized current statuses of 3 common wearable devices in medical, especially in cardiovascular disease morning. Finally, we made a hypothesis of development of wearable devices in the future.  

參考文獻:

[1]宋奇. Wear OS 3.0更新在即:高通驍龍多平臺確認支持 [J]. 計算機與網絡, 2021, 47(12): 33.

[2]劉思文, 谷朝霞, 呂世軍, 等. "互聯(lián)網+"醫(yī)療模式的意義與必要性分析 [J]. 中國市場, 2021(20): 187-188.

[3]Zhang C, Kremer MP, Seral-Ascaso A, et al. Microelectronics: stamping of flexible, coplanar micro-supercapacitors using mxene inks? [J]. Advanced Functional Materials, 2018, 28(9): 1870059.

[4]Jiang Q, Wu C, Wang Z, et al. MXene electrochemical microsupercapacitor integrated with triboelectric nanogenerator as a wearable self-charging power unit [J]. Nano Energy, 2018, 45: 266-272.

[5]Lee H, Choi TK, Lee YB, et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy [J]. Nature Nanotechnology, 2016, 11(6): 566-572.

[6]Caldara M, Colleoni C, Guido E, et al. Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3-glycidoxypropyltrimethoxysilane coating [J]. Sensors and Actuators B: Chemical, 2016, 222: 213-220.

[7]Pang C, Koo JH, Nguyen A, et al. Highly skin-conformal microhairy sensor for pulse signal amplification [J]. Advanced Materials, 2015, 27(4): 634-640.

[8]王闖, 鮑容容,潘曹峰. 基于納米發(fā)電機的觸覺傳感在柔性可穿戴電子設備中的研究與應用 [J]. 物理學報, 2021, 70(10): 19-33.

Wang C,Bao RR ,Pan CF. Research and application of flexible wearable electronics based on nanogenerator in touch sensor[J]. Acta?Physica Sinica, 2021,70(10):19-33.

[9]王佳松. 基于可穿戴系統(tǒng)的下肢信息智能感知技術研究 [D]. 杭州:杭州電子科技大學, 2021.

Wang JS. Research on wearable information system based on lower limb perception [D].Hangzhou:Hangzhou Dianzi University,2021.

[10]Choi J, Ghaffari R, Baker LB, et al. Skin-interfaced systems for sweat collection and analytics [J]. Science Advances, 2018, 4(2): eaar3921.

[11]Oh JH, Hong SY, Park H, et al. Fabrication of High-Sensitivity Skin-Attachable Temperature Sensors with Bioinspired Microstructured Adhesive [J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7263-7270.

[12]Gowers SAN, Curto VF, Seneci CA, et al. 3D Printed Microfluidic Device with Integrated Biosensors for Online Analysis of Subcutaneous Human Microdialysate [J]. Analytical Chemistry, 2015, 87(15): 7763-7770.

[13]Mohan AMV, Windmiller JR, Mishra RK, et al. Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays [J]. Biosensors and Bioelectronics, 2017, 91: 574-579.

[14]Güder F, Ainla A, Redston J, et al. Paper-Based Electrical Respiration Sensor [J]. Angewandte Chemie International Edition, 2016, 55(19): 5727-5732.

[15]Wang S, Wu Y, Gu Y, et al. Wearable sweatband sensor platform based on gold nanodendrite array as efficient solid contact of ion-selective electrode [J]. Analytical Chemistry, 2017, 89(19): 10224-10231.

[16]Amjadi M, Kyung K-U, Park I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review [J]. Advanced Functional Materials, 2016, 26(11): 1678-1698.

[17]Trung TQ ,Lee NE. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare [J]. Advanced Materials, 2016, 28(22): 4338-4372.

[18]Wang S, Chinnasamy T, Lifson MA, et al. Flexible substrate-based devices for point-of-care diagnostics [J]. Trends in Biotechnology, 2016, 34(11): 909-921.

[19]Liao X, Zhang Z, Liao Q, et al. Flexible and printable paper-based strain sensors for wearable and large-area green electronics [J]. Nanoscale, 2016, 8(26): 13025-13032.

[20]Pu Z, Zou C, Wang R, et al. A continuous glucose monitoring device by graphene modified electrochemical sensor in microfluidic system [J]. Biomicrofluidics, 2016, 10(1): 011910.

[21]Bandodkar AJ, Hung VW, Jia W, et al. Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring [J]. Analyst, 2013, 138(1): 123-128.

[22]Chen J, Wen H, Zhang G, et al. Multifunctional conductive hydrogel/thermochromic elastomer hybrid fibers with a core–shell segmental configuration for wearable strain and temperature sensors [J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7565-7574.

[23]Dervisevic M, Alba M, Prieto-Simon B, et al. Skin in the diagnostics game: wearable biosensor nano- and microsystems for medical diagnostics [J]. Nano Today, 2020, 30: 100828.

[24]Zhao L, Wen Z, Jiang F, et al. Silk/polyols/GOD microneedle based electrochemical biosensor for continuous glucose monitoring [J]. RSC Advances, 2020, 10(11): 6163-6171.

[25]Nightingale AM, Leong CL, Burnish RA, et al. Monitoring biomolecule concentrations in tissue using a wearable droplet microfluidic-based sensor [J]. Nature Communications, 2019, 10(1): 2741.

[26]Feng S, Caire R, Cortazar B, et al. Immunochromatographic diagnostic test analysis using google glass [J]. ACS Nano, 2014, 8(3): 3069-3079.

[27]Balakrishnan V, Dinh T, Foisal ARM, et al. Paper-based electronics using graphite and silver nanoparticles for respiration monitoring [J]. IEEE Sensors Journal, 2019, 19(24): 11784-11790.

[28]Zhang H, Zhang J, Hu Z, et al. Waist-wearable wireless respiration sensor based on triboelectric effect [J]. Nano Energy, 2019, 59: 75-83.

[29]Garcia-Cordero E, Bellando F, Zhang J, et al. Three-Dimensional Integrated Ultra-Low-Volume Passive Microfluidics with Ion-Sensitive Field-Effect Transistors for Multiparameter Wearable Sweat Analyzers [J]. ACS Nano, 2018, 12(12): 12646-12656.

[30]Rose DP, Ratterman ME, Griffin DK, et al. Adhesive RFID sensor patch for monitoring of sweat electrolytes [J]. IEEE Transactions on Biomedical Engineering, 2015, 62(6): 1457-1465.

[31]Cazalé A, Sant W, Ginot F, et al. Physiological stress monitoring using sodium ion potentiometric microsensors for sweat analysis [J]. Sensors and Actuators B: Chemical, 2016, 225: 1-9.

[32]Matzeu G, Fay C, Vaillant A, et al. A Wearable device for monitoring sweat rates via image analysis [J]. IEEE Transactions on Biomedical Engineering, 2016, 63(8): 1672-1680.

[33]Schwartz G, Tee BC, Mei J, et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring [J]. Nature Communications, 2013, 4: 1859.

[34]Dias D and Paulo Silva Cunha J. Wearable health devices—vital sign monitoring, systems and technologies [J]. Sensors, 2018, 18(8): 2414.

[35]Haahr RG, Duun SB, Toft MH, et al. An electronic patch for wearable health monitoring by reflectance pulse oximetry [J]. IEEE Transactions on Biomedical Circuits and Systems, 2012, 6(1): 45-53.

[36]Chacon PJ, Pu L, da?Costa TH, et al. A wearable pulse oximeter with wireless communication and motion artifact tailoring for continuous use [J]. IEEE Transactions on Biomedical Engineering, 2019, 66(6): 1505-1513.

?

?

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]