51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
一種面向癌癥個性化的代謝分析方法

A metabolic analysis method for cancer individualization

作者: 馮昌奇  鄭浩然 
單位:中國科學(xué)技術(shù)大學(xué)計算機科學(xué)與技術(shù)學(xué)院(合肥 230027)<br />通信作者:鄭浩然,副教授。E-mail: [email protected]
關(guān)鍵詞: 癌癥代謝;代謝網(wǎng)絡(luò)模型;個性化;差異表達(dá)基因;靶點基因 
分類號:R318
出版年·卷·期(頁碼):2022·41·4(331-337)
摘要:

目的 不同類型的癌癥之間,甚至是同一癌癥類型的不同患者個體之間,在代謝重編程的精確表現(xiàn)上都具有異質(zhì)性,因此導(dǎo)致相同的藥物在不同的癌癥患者體內(nèi)會產(chǎn)生不同的結(jié)果,以致于很難找到一種通用的治療方案。為了探究癌癥的這種異質(zhì)性,本文提出了一種分析癌癥個性化代謝的新方法。方法 本文使用來自癌癥基因組圖譜(The Cancer Genome Atlas, TCGA)的轉(zhuǎn)錄組數(shù)據(jù),采用基于差異表達(dá)基因的代謝網(wǎng)絡(luò)重構(gòu)方法,通過對比每名患者的癌細(xì)胞和鄰近正常細(xì)胞的基因表達(dá)數(shù)據(jù)之間的差異,還原重構(gòu)出癌細(xì)胞相對原發(fā)組織細(xì)胞特有的那部分代謝網(wǎng)絡(luò)。通過模擬基因敲除等手段,尋找潛在的癌癥個性化治療靶點基因。結(jié)果 本文對來自TCGA的17種癌癥類型的679對樣本進(jìn)行了分析,發(fā)現(xiàn)了它們在癌癥特異性代謝網(wǎng)絡(luò)上的巨大差異,并得到了大量的個性化治療靶點。特別是其中63個靶點基因,它們只對特定的某個患者有效。結(jié)論 不同的患者細(xì)胞癌變后發(fā)生的代謝變化具有很大的差異,需要進(jìn)行個性化治療方案的研究。本文提出的分析方法為癌癥的個性化分析提供了新的思路,找到的個性化靶點也可以進(jìn)行進(jìn)一步的臨床研究。

Objective There is heterogeneity in the precise performance of metabolic reprogramming between different types of cancer, even between different patients of the same cancer type. Therefore, the same drug will produce different results in different cancer patients, so that it is difficult to find a general treatment plan. In order to explore this heterogeneity of cancer, this article proposes a new method to analyze the personalized metabolism of cancer. Methods This article used transcriptome data from The Cancer Genome Atlas (TCGA), and used a metabolic network reconstruction method based on differentially expressed genes. By comparing the difference of the gene expression data between cancer cells and neighboring normal cells in each patient, the metabolic network that is unique to the cancer cell relative to the original tissue cells can be restored and reconstructed. By simulating gene knockout and other means, we can find potential target genes for personalized cancer therapy. Results This article analyzed 679 samples from 17 cancer types from TCGA and found huge differences in cancer-specific metabolic networks, and obtained a large number of personalized treatment targets. In particular, 63 of these target genes are only effective for a specific patient. Conclusion The metabolic abnormalities that occur after different individuals' cells become cancerous are very different, and it is necessary to conduct research on individualized treatment plans. The analysis method proposed in this paper provides new ideas for the personalized analysis of cancer, and the personalized targets found can also be used for further clinical research.

參考文獻(xiàn):

[1] Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing[J]. The New England Journal of Medicine, 2012,366(10): 883-892.
[2] Kim HS, Mendiratta S, Kim J, et al. Systematic identification of molecular subtype-selective vulnerabilities in non-small-cell lung cancer[J]. Cell, 2013,155(3): 552-566.
[3] Gerdes MJ, Sood A, Sevinsky C, et al. Emerging understanding of multiscale tumor heterogeneity[J]. Frontiers in Oncology, 2014,4: 366.
[4] Tabassum DP, Polyak K. Tumorigenesis: it takes a village[J]. Nature Reviews Cancer,2015,15:473-483.
[5] Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies[J]. Nature Reviews Clinical Oncology, 2018,15(2): 81-94.
[6] Hiller K, Metallo CM. Profiling metabolic networks to study cancer metabolism[J]. Current Opinion in Biotechnology, 2013, 24(1): 60-68.
[7] Deberardinis RJ, Thompson CB. Cellular metabolism and disease: what do metabolic outliers teach us ?[J]. Cell, 2012, 148(6):1132-1144.
[8] Chiang, A.C.; Massagué, J. Molecular basis of metastasis[J]. The New England Journal of Medicine, 2008, 359: 2814–2823.
[9] Benfeitas R, Bidkhori G, Mukhopadhyay B, et al. Characterization of heterogeneous redox responses in hepatocellular carcinoma patients using network analysis[J]. EBioMedicine, 2019, 40: 471-487.
[10] Bidkhori G, Benfeitas R, Elmas E, et al. Metabolic network-based identification and prioritization of anticancer targets based on expression data in hepatocellular carcinoma[J]. Frontiers in Physiology, 2018, 9: 916.
[11] Mardinoglu A, Nielsen J. Systems medicine and metabolic modelling[J]. Journal of Internal Medicine, 2012, 271(2):142-154.?
[12] Zhang C, Hua Q. Applications of genome-scale metabolic models in biotechnology and systems medicine[J]. Frontiers in Physiology, 2016, 6:413.
[13] Berndt N, Eckstein J, Heucke N, et al. Metabolic heterogeneity of human hepatocellular carcinoma: implications for personalized pharmacological treatment[J]. The FEBS Journal, 2021, 288(7): 2332-2346.
[14] Baloni P, Dinalankara W, Earls JC, et al. Identifying personalized metabolic signatures in breast cancer[J]. Metabolites, 2021, 11(1): 20.
[15] Smyth GK. Limma: linear models for microarray data[M]// Bioinformatics and computational biology solutions using R and bioconductor. Statistics for biology and health. New York: Springer, New York, NY, 2005: 397-420.
[16] Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Research, 2015, 43(7): e47.
[17] Brunk E, Sahoo S, Zielinski DC, et al. Recon3D enables a three-dimensional view of gene variation in human metabolism[J]. Nature Biotechnology, 2018, 36(3): 272-281.
[18] Heirendt L, Arreckx S, Pfau T, et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0[J]. Nature Protocols, 2019, 14(3): 639-702.
[19] Vlassis N, Pacheco MP, Sauter T. Fast reconstruction of compact context-specific metabolic network models[J]. PLoS Computational Biology, 2014, 10(1): e1003424.
[20] Wang H, Marci?auskas S, Sánchez BJ, et al. RAVEN 2.0: a versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor[J]. PLoS Computational Biology, 2018, 14(10): e1006541.
[21] Robinson JL, Kocaba? P, Wang H, et al. An atlas of human metabolism[J]. Science Signaling, 2020, 13(624): eaaz1482.
[22] Agren R, Mardinoglu A, Asplund A, et al. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome‐scale metabolic modeling[J]. Molecular Systems Biology, 2014, 10(3): 721.
[23] Zhuang H, Zhou Z, Zhang Z, et al. B3GNT3 overexpression promotes tumor progression and inhibits infiltration of CD8+ T cells in pancreatic cancer[J]. Aging (Albany NY), 2020, 13(2): 2310-2329.?
[24] Zhang W, Hou T, Niu C, et al. B3GNT3 expression is a novel marker correlated with pelvic lymph node metastasis and poor clinical outcome in early-stage cervical cancer[J]. PLoS One, 2015,10(12): e0144360.
[25] Cho U, Yang SH, Yoo C. Estimation of the occurrence rates of IDH1 and IDH2 mutations in gliomas and the reconsideration of IDH-wildtype anaplastic astrocytomas: an institutional experience[J]. The Journal of International Medical Research, 2021, 49(6):3000605211019258.
[26] Liao R, Ren G, Liu H, et al. ME1 promotes basal-like breast cancer progression and associates with poor prognosis[J]. Scientific Reports, 2018, 8(1): 16743.
[27] Jiang Z, Cui H, Zeng S, et al. miR-885-5p inhibits invasion and metastasis in gastric cancer by targeting malic enzyme 1[J]. DNA and Cell Biology, 2021, 40(5): 694-705.
[28] Li J, Yue H, Yu H, et al. Patients with low nicotinamide N-methyltransferase expression benefit significantly from bevacizumab treatment in ovarian cancer[J]. BMC Cancer, 2021, 21(1): 67.
[29] Zhang L, Song M, Zhang F, et al. Accumulation of nicotinamide N-methyltransferase (NNMT) in cancer-associated fibroblasts: a potential prognostic and predictive biomarker for gastric carcinoma[J]. Journal of Histochemistry & Cytochemistry, 2021, 69(3): 165-176.
[30] Harmankaya ?, Akar S, U?ra? S, et al. Nicotinamide N-methyltransferase overexpression may be associated with poor prognosis in ovarian cancer[J]. Journal of Obstetrics and Gynaecology, 2021, 41(2): 248-253.
[31] Chandrika M, Chua PJ, Muniasamy U, et al. Prognostic significance of phosphoglycerate dehydrogenase in breast cancer[J]. Breast Cancer Research and Treatment, 2021, 186(3): 655-665.
[32] Song Z, Feng C, Lu Y, et al. PHGDH is an independent prognosis marker and contributes cell proliferation, migration and invasion in human pancreatic cancer[J]. Gene, 2018, 642:43-50.
[33] Yoshino H, Enokida H, Osako Y, et al. Characterization of PHGDH expression in bladder cancer: potential targeting therapy with gemcitabine/cisplatin and the contribution of promoter DNA hypomethylation[J]. Molecular Oncology, 2020, 14(9): 2190-2202.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]