51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
深靜脈血栓關鍵基因 AP2B1 和 miRNAs 及其相關通路的篩選

Screening of key gene AP2B1, miRNAs and related pathways in deep venous thrombosis

作者: 祁莎莎  曹鑫  徐寧寧  陳靜 
單位:青島市第八人民醫(yī)院手術室(山東青島 266041),<br />山東第一醫(yī)科大學基礎醫(yī)學院(濟南 250000),<br />通信作者:陳靜。E-mail:[email protected]
關鍵詞: 深靜脈血栓;生物信息學;關鍵基因;AP2B1;miRNAs 
分類號:R318 &nbsp;
出版年·卷·期(頁碼):2022·41·4(344-351)
摘要:

目的 通過生物信息學方法預測深靜脈血栓的關鍵基因和miRNAs,并對其相關通路進行研究,為深靜脈血栓的診斷及治療提供新的思路。方法 通過分析GEO在線數(shù)據(jù)庫中人類深靜脈血栓(deep vein thrombosis, DVT)GSE17078數(shù)據(jù)集,其中包含正常對照27例和DVT 3例,篩選其中表達差異最顯著的基因作為DVT的關鍵基因;利用Networkanalyst網(wǎng)站對關鍵基因進行器官富集分析,查看關鍵基因在器官內(nèi)的富集情況;應用TargetScan、miRDB及mirTARBASE在線數(shù)據(jù)庫預測關鍵基因相關的miRNAs,并利用Venn圖對預測得到的miRNAs取交集,得到最相關的miRNAs,通過mirTARBASE在線數(shù)據(jù)庫對miRNAs進行基因本體論GO(gene ontology)分析和信號通路富集KEGG(Kyoto Encyclopedia of Genes and Genome)分析;通過STRING網(wǎng)站對關鍵基因進行進行PPI(protein-protein interaction)網(wǎng)絡構建及蛋白互作網(wǎng)絡基因的GO分析和KEGG分析。最后通過動物實驗,對關鍵基因及相關的miRNAs進行定量分析。結果 通過差異基因分析得出DVT關鍵基因是AP2B1(P=2.99e-09),在人腦中表達量最高,且在海馬體中AP2B1與之相互作用的基因最多;經(jīng)在線數(shù)據(jù)庫預測得出關鍵基因AP2B1的miRNAs,再通過Venn圖取交集后得出概率最大的miRNAs是hsa-miRNA4780、hsa-miRNA-106b-5p及hsa-miRNA-16-5p(P<0.05);通過mirTARBASE數(shù)據(jù)庫對hsa-miRNA-4780、hsa-miRNA-106b-5p及hsa-miRNA-16-5p進行通路富集分析,得出其顯著富集于TGF-β信號通路、細胞周期及脂肪酸生物合成等16個信號通路中(P<0.05);通過STRING網(wǎng)站對關鍵基因AP2B1進行PPI構建圖分析出AP2B1編碼的蛋白質與AP1M1等10種蛋白質相互作用復雜;并對蛋白互作網(wǎng)絡基因進行GO分析及KEGG分析,發(fā)現(xiàn)其在病毒防御、受體代謝等功能富集,在內(nèi)吞作用、內(nèi)分泌相關的鈣離子重吸收等KEGG通路富集;動物實驗結果證實,DVT組AP2B1基因表達量低于對照組,而hsa-miRNA-4780、hsa-miRNA-106b-5p及hsa-miRNA-16-5p的表達量高于對照組(P<0.05)。結論 通過預測得出hsa-miRNA-106b-5p及hsa-miRNA-16-5p可能通過TGF-β等信號通路調(diào)控關鍵基因AP2B1的表達,參與深靜脈血栓形成發(fā)展的病理生理過程,可作為新型生物診斷標志物,為深靜脈血栓的臨床診斷及治療提供新的思路。

Objective The key gene and miRNAs in DVT were predicted by bioinformatics methods, and their related pathways were studied to provide new ideas for the diagnosis and treatment of DVT. Methods By analyzing the DATA set GSE17078 of human deep vein thrombosis (DVT) in GEO online database, including 27 normal control cases and 3 DVT cases, the genes with the most significant expression difference were screened as the key gene of DVT. Networkanalyst website was used to perform organ enrichment analysis to check the enrichment of key gene in organs; TargetScan, miRDB and mirTARBASE online databases were used to predict the related miRNAs of key gene, and Venn graph was used to take the intersection of the predicted miRNAs, and the miRNAs with higher correlation were obtained. GO (Gene Ontology) analysis and KEGG (Kyoto Encyclopedia of Genes and Genome) analysis of miRNAs were conducted by mirTARBASE online database. By STRING website, protein-protein Interaction (PPI) network was constructed and GO analysis and KEGG analysis were conducted for the genes of PPI. Finally, through animal experiments, the key gene AP2B1 and its related hsa-miRNA-4780、hsa-miRNA-106b-5p and hsa-miRNA-16-5p were quantitatively analyzed. Results Through differential gene analysis, the key differential gene of DVT was AP2B1 (P = 2.99e-09), which had the highest expression level in human brain. In addition,AP2B1 interacted with other genes mostly in hippocampus. The miRNAs of gene AP2B1 were predicted by online databases, and the most probable miRNAs were hsa-miRNA-4780, hsa-miRNA-106b-5p and hsa-miRNA-16-5p(P<0.05) by Venn diagram. The results showed that hsa-miRNA-4780, hsa-miRNA-106b-5p and hsa-miRNA-16-5p were significantly enriched in 16 signaling pathways, including TGF - β signaling pathway, cell cycle and fatty acid biosynthesis (P < 0.05). Through the PPI construction map of the key gene AP2B1 on the STRING website, it was analyzed that the protein encoded by AP2B1 had complex interactions with 10 proteins such as AP1M1. GO analysis and KEGG analysis illustrated that the protein interaction network genes were enriched in viral defense, receptor metabolism and other functions, and enriched in KEGG pathways such as endocytosis and endocrine related calcium reabsorption. The results of animal experiments confirmed that the expression level of AP2B1 in DVT group was lower than that in control group, while the expression levels of hsa-miRNA-4780, hsa-miRNA-106b-5p and hsa-miRNA-16-5p were higher than that in control group, and the differences were statistically significant. Conclusions By bioinformatics prediction, it is concluded that hsa-miRNA-106b-5p and hsa-miRNA-16-5p might regulate the expression of target gene AP2B1 through TGF-β and other signaling pathways, and participate in the pathophysiological process of DVT, which can be used as new biological diagnostic markers to provide a new idea for the clinical diagnosis and treatment of DVT .

參考文獻:

[1] Morelli VM, Br?kkan S, Hansen JB. Role of microRNAs in venous thromboembolism[J]. International Journal of Molecular Sciences, 2020, 21(7): 2602.
[2]蔣知云,馬俊芬,明亮. microRNA 在深靜脈血栓形成中的作用及臨床價值研究進展[J]. 醫(yī)學研究生學報, 2017, 30(8): 893-896.
Jiang ZY, Ma JF, Ming L. Advances in the study of microRNA in deep vein thrombosis[J]. Journal of Medical Postgraduates, 2017, 30(8): 893-896.
[3] 褚楚,劉文,郭紅,等. miR-664b-3p調(diào)控Caspase-1介導細胞焦亡在深靜脈血栓形成中的作用[J].山東醫(yī)藥,2021,61(8):20-23.
Zhu C, Liu W, Guo H, et al. Regulatory role of miR-664b-3p in caspase-1-mediated pyroptosis in patients with deep vein thrombosis[J].Shandong Medical Journal,2021,61(8):20-23.
[4] 馮濤,李晶,潘金強,等. miR-5189-3p在下腔深靜脈血栓形成的調(diào)控機制的研究[J].臨床外科雜志,2021,29(5):478-481.
Feng T, Li J, Pan JQ, et al. Study on the regulatory mechanism of miR-5189-3p in deep venous thrombosis of lower extremities
[J]. Journal of Clinical Surgery, 2021, 29(5): 478-481.
[5]霍艷兵,彭琪,彭星華,等. MicroRNA-374a-5p水平與混合型深靜脈血栓形成患者臨床特征的關系及在預后判斷中的價值[J].中國現(xiàn)代醫(yī)學雜志, 2020, 30(19): 23-28.
Huo YB, Peng Q, Peng XH, et al. Clinical characters and prognostic values of microRNA-374a-5p in patients with mixed deep vein thrombosis[J].China Journal of Modern Medicine, 2020, 30(19): 23-28.
[6]Aigner A. MicroRNAs (miRNAs) in cancer invasion and metastasis: therapeutic approaches based on metastasis-related miRNAs[J]. Journal of Molecular Medicine, 2011, 89(5): 445-457.
[7]Hembrom AA, Srivastava S, Garg I, et al. MicroRNAs in venous thrombo-embolism[J]. Clinica Chimica Acta, 2020, 504: 66–72.?
[8] Jiang Z, Ma J, Wang Q, et al. Circulating microRNA expression and their target genes in deep vein thrombosis: a systematic review and bioinformatics analysis[J]. Medicine (Baltimore), 2017, 96(50): e9330.
[9] Bijak M, Dzieciol M, Rywaniak J, et al. Platelets miRNA as a prediction marker of thrombotic episodes[J]. Disease Markers, 2016, 2016: 2872507.?
[10] Sahu A, Jha PK, Prabhakar A, et al. MicroRNA-145 impedes thrombus formation via targeting tissue factor in venous thrombosis[J]. EBioMedicine, 2017, 26: 175-186.
[11]Jiang Z, Ma J, Wang Q, et al. Combination of circulating miRNA-320a/b and D-dimer improves diagnostic accuracy in deep vein thrombosis patients[J]. Medical Science Monitor, 2018, 24: 2031–2037.
[12] Du X, Hong L, Sun L, et al. miR-21 induces endothelial progenitor cells proliferation and angiogenesis via targeting FASLG and is a potential prognostic marker in deep venous thrombosis[J]. Journal of Translational Medicine, 2019, 17(1): 270.
[13] Thibord F, Munsch G, Perret C, et al. Bayesian network analysis of plasma microRNA sequencing data in patients with venous thrombosis[J]. European Heart Journal Supplements, 2020, 22(Suppl C): C34-C45.
[14]高浩然,王巖,段雨晴,等.神經(jīng)重癥患者靜脈血栓栓塞的發(fā)生率、危險因素及住院結局分析[J].中國卒中雜志,2021,16(7):694-698.
Gao HR, Wang Y, Duan YQ, et al. Incidence, risk factors and in-hospital outcome of venous thromboembolism in neurocritical patients[J]. Chinese Journal of Stroke, 2021, 16(7): 694-698.
[15] Koscielny A, Malik AR, Liszewska E, et al. Adaptor complex 2 controls dendrite morphology via mTOR-dependent expression of GluA2[J]. Molecular Neurobiology, 2018, 55(2): 1590-1606.
[16] Suzuki HI. MicroRNA control of TGF-β signaling[J]. International Journal of Molecular Sciences,2018, 19(7):1901.
[17]Janakiraman H, House RP, Gangaraju VK, et al. The long (lncRNA) and short (miRNA) of it: TGFβ-mediated control of RNA-binding proteins and noncoding RNAs[J]. Molecular Cancer Research,2018,16(4): 567–579.
[18] Sj?din S, Brinkmalm G, ?hrfelt A, et al. Endo-lysosomal proteins and ubiquitin CSF concentrations in Alzheimer's and Parkinson's disease[J]. Alzheimer's Research?& Therapy, 2019, 11(1): 82.

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]