51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于 KICA 和 MAMA?EMD 的眼電偽跡去除方法

An EOG artifact removal method based on KICA and MAMA-EMD

作者: 張圓圓  孫炎珺  李明愛 
單位:北京工業(yè)大學(xué)信息學(xué)部(北京 100124),&nbsp;<br />計(jì)算智能與智能系統(tǒng)北京市重點(diǎn)實(shí)驗(yàn)室(北京 100124)<br />,數(shù)字社區(qū)教育部工程研究中心(北京 100124),&nbsp;<br />通信作者:李明愛。E-mail: [email protected]
關(guān)鍵詞: 腦電信號(hào);  眼電偽跡;  核獨(dú)立分量分析;  模態(tài)分裂;掩膜最小弧長經(jīng)驗(yàn)?zāi)B(tài)分解 
分類號(hào):R318.04 &nbsp;
出版年·卷·期(頁碼):2022·41·4(360-367)
摘要:

目的 為了準(zhǔn)確地分離并去除腦電(EEG)信號(hào)中的尖峰狀眼電(EOG)偽跡,本文提出一種基于核獨(dú)立分量分析(kernel independent component analysis, KICA)和掩膜最小弧長經(jīng)驗(yàn)?zāi)B(tài)分解(masking-aided minimum arclength empirical mode decomposition, MAMA-EMD)的眼電偽跡去除方法,即KICMME。方法 首先,使用KICA將多通道受污染的EEG信號(hào)分離為多個(gè)獨(dú)立分量(independent components, ICs);然后,計(jì)算每個(gè)IC的峰度值,確定與EOG相關(guān)的IC,并利用MAMA-EMD算法對其進(jìn)一步分解,得到一組固有模態(tài)函數(shù)(intrinsic mode function, IMF);進(jìn)而,通過計(jì)算各IMF的低頻功率占比,識(shí)別并剔除與EOG相關(guān)性高的IMF;最后,基于MAMA-EMD和KICA的逆變換重構(gòu)出“純凈”EEG信號(hào)。結(jié)果 在半模擬和真實(shí)腦電兩個(gè)數(shù)據(jù)集上進(jìn)行實(shí)驗(yàn)研究,KICMME取得的均方誤差和信噪比分別為0.82 〖μV〗^2和12.51 dB,獲得的分類準(zhǔn)確率和Kappa值分別為91%和0.83。結(jié)論 MAMA-EMD能夠準(zhǔn)確地分離出與EOG相關(guān)的IMF分量,使得KICMME可以在保留有用神經(jīng)信息的同時(shí),最大限度地去除EEG信號(hào)中的EOG偽跡,相對現(xiàn)有基于盲源分離的眼電偽跡去除方法具有明顯優(yōu)勢。

Objective In order to isolate and remove the spike-like electrooculogram (EOG) artifacts from EEG signals accurately, this paper proposed a novel method based on kernel independent component analysis (KICA) and masking-aided minimum arclength empirical mode decomposition (MAMA-EMD), namely KICMME, for the removal of EOG artifacts. Methods Firstly, the multichannel contaminated EEG signals were separated by KICA into several independent components (ICs). Secondly, the kurtosis value of each IC was calculated to detect EOG-related IC, and MAMA-EMD algorithm was used to decompose it further to obtain a set of intrinsic mode functions (IMFs). Furthermore, the IMFs linked with EOG were identified and eliminated by calculating the low-frequency power proportion of each IMF. Finally, the ‘clean’ EEG was reconstructed by performing the inverse transform of MAMA-EMD and KICA. Results Based on the experimental research of semi-simulated and real EEG data, KICMME achieved a mean square error (MSE) of 0.82 〖μV〗^2and a signal-to-noise ratio (SNR) of 12.51 dB, and the classification accuracy and Kappa values were 91% and 0.83 respectively. Conclusions MAMA-EMD can accurately isolate the IMF component associated with EOG, and KICMME can remove EOG artifacts from EEG signals to the maximum extent while retaining useful neural information, which has great improvement compared with the existing EOG artifact removal methods based on blind source separation.

參考文獻(xiàn):

[1] Wolpaw JR, Birbaumer N, McFarland DJ, et al. Brain-computer interface for communication and control [J]. Clinical Neurophysiology, 2002, 113(6): 767-791.
[2] 張娜,孫炎珺,李明愛. 一種個(gè)性化動(dòng)態(tài)腦功能網(wǎng)絡(luò)的構(gòu)建與特征提取方法[J]. 北京生物醫(yī)學(xué)工程,2020, 39(6): 551-560.
Zhang N, Sun YJ, Li MA. A personalized dynamic brain functional network and feature extraction [J]. Beijing Biomedical Engineering, 2020, 39(6): 551-560.
[3] 李明愛, 劉帆. 腦電中眼電偽跡的自動(dòng)識(shí)別與去除[J]. 北京生物醫(yī)學(xué)工程, 2018, 37(6): 559-565.
Li MA, Liu F. The automatic identification and removal of ocular artifacts from EEG [J]. Beijing Biomedical Engineering, 2018, 37(6): 559-565.
[4] Islam K, Rastegarnia A, Yang Z. Methods for artifact detection and removal from scalp EEG: a review [J]. Neurophysiologie Clinique/Clinical Neurophysiology, 2016, 46(4-5): 287-305.
[5] De Clercq W, Vergult A, Vanrumste B, et al. Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram [J]. IEEE Transactions on Biomedical Engineering, 2006, 53(12): 2583-2587.
[6] Mognon A, Jovicich J, Bruzzone L, et al. ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features [J]. Psychophysiology, 2011, 48(2): 229-240.
[7] Bach F, Jordan M. Kernel independent component analysis [J]. Journal of Machine Learning Research, 2002, 3: 1-48.
[8] Li MA, Cui Y, Yang JF. Automatic removal of ocular artifact from EEG with DWT and ICA method [J]. Applied Mathematics and Information Sciences, 2013, 7(2): 809-816.
[9] Li MA, Guo SD, Zuo GY, et al. Removing ocular artifacts from mixed EEG signals with FastKICA and DWT [J]. Journal of Intelligent and Fuzzy Systems, 2015, 28(6): 2851-2861.
[10] Maddirala AK, Shaik RA. Removal of EOG artifacts from single channel EEG signals using combined singular spectrum analysis and adaptive noise canceler [J]. IEEE Sensors Journal, 2016, 16(23): 8279-8287.
[11] Gao C, Ma L, Li H. An ICA/HHT hybrid approach for automatic ocular artifact correction [J]. International Journal of Pattern Recognition and Artificial Intelligence, 2015, 29(2): 1558001.
[12] Yang BH, Zhang T, Zhang Y, et al. Removal of electrooculogram artifacts from electroencephalogram using canonical correlation analysis with ensemble empirical mode decomposition [J]. Cognitive Computation, 2017, 9(5): 626-633.
[13] Yang H, Jeng S, Young HV, et al. A minimum arclength method for removing spikes in empirical mode decomposition [J]. IEEE Access, 2019, 7: 13284-13294.
[14] Wang G, Teng C, Li K, et al. The removal of EOG artifacts from EEG signals using independent component analysis and multivariate empirical mode decomposition [J]. IEEE Journal of Biomedical and Health Informatics, 2016, 20(5): 1301-1308.
[15] Urigüen JA, Garcia-Zapirain B. EEG artifact removal-state-of-the-art and guidelines[J]. Journal of Neural Engineering, 2015, 12(3): 031001.
[16] Blankertz B, Dornhege G, Krauledat M, et al. The non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects[J]. Neuroimage, 2007, 37(2): 539-550.
[17] Mannan MMN, Kamran MA, Kang S, et al. Effect of EOG signal filtering on the removal of ocular artifacts and EEG-based brain-computer interface: a comprehensive study [J]. Complexity, 2018, 2018: 4853741.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]