51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于 EEG 的失神癲癇發(fā)作間期腦功能連接動(dòng)態(tài)改變

The dynamic changes of brain functional connectivity inter-ictal of absence epilepsy based on EEG

作者: 蔣絲麗  羅華  阮江海 
單位:遂寧市中心醫(yī)院腦血管病科(四川遂寧 629000,<br />西南醫(yī)科大學(xué)附屬醫(yī)院神經(jīng)內(nèi)科(四川瀘州 646000,<br />通信作者:阮江海。E-mail: [email protected]
關(guān)鍵詞: 失神發(fā)作;靜息態(tài)腦電圖;功能連接;PLV;圖論 
分類號:R318.04&nbsp;
出版年·卷·期(頁碼):2022·41·4(368-373)
摘要:

目的 借助靜息態(tài)腦電數(shù)據(jù)分析探索失神癲癇(Absence epilepsy, AE)患者發(fā)作間期是否存在腦網(wǎng)絡(luò)改變,為失神發(fā)作的網(wǎng)絡(luò)基礎(chǔ)提供理論依據(jù)。方法 納入AE患者21例,每例截取5段發(fā)作前、發(fā)作后及發(fā)作間期腦電數(shù)據(jù)各10 s用于分析比較;同時(shí)納入性別、年齡匹配的健康體檢者21例作為正常對照組,對照組每例截取5段靜息態(tài)腦電數(shù)據(jù)各10s進(jìn)行分析。通過鎖相值(phase locking value,PLV)構(gòu)建腦網(wǎng)絡(luò),然后基于EEG電極導(dǎo)聯(lián)的相位同步分析;借助圖論分析計(jì)算網(wǎng)絡(luò)參數(shù)(路徑長度、全局效率、聚類系數(shù)、局部效率)。比較AE組與正常對照組及AE組組內(nèi)功能連接及網(wǎng)絡(luò)參數(shù)差異。結(jié)果 與正常對照組相比,AE組發(fā)作間期腦電在delta及beta2頻段額顳頂區(qū)連通性增強(qiáng)。同時(shí),beta2頻段,AE組較正常對照組聚類系數(shù)、全局效率、局部效率增加,路徑長度降低(P<0.05); 對于AE組,與發(fā)作間期比較,在delta、theta、alpha2、beta1及beta 2頻段,發(fā)作前其路徑長度降低,聚類系數(shù)、全局效率、局部效率增加(P<0.05);發(fā)作后與發(fā)作間期相比,其路徑長度降低,聚類系數(shù)、全局效率、局部效率增加(P<0.05)。結(jié)論 AE病人存在功能連接及網(wǎng)絡(luò)屬性參數(shù)的異常改變;同時(shí),AE患者在失神發(fā)作過程中也伴隨著功能連接和網(wǎng)絡(luò)參數(shù)的改變;在發(fā)作前和發(fā)作間期腦網(wǎng)絡(luò)連接的差異主要表現(xiàn)在網(wǎng)絡(luò)屬性上,這可能提示失神發(fā)作終止后的一定時(shí)間內(nèi),其腦功能仍然可能未完全恢復(fù)。

 Objective Using resting state EEG data analysis to explore whether there are any brain network change in patients with Absence epilepsy (AE) during the interictal period, and to provide theoretical basis for the network of absence seizures. Methods A total of 21 patients with AE were included in this study. 5 segments EEG data of each group from before-ictal, after-ictal and inter-ictal were intercepted for 10s for analysis and comparison. At the same time, 21 healthy subjects with gender and age matching were included as control group, and 5 segments of resting state EEG data for 10s were intercepted from each control group for analysis. The brain network was constructed by phase locking value (PLV), and then phase synchronization analysis was performed based on EEG electrodes. Network parameters including path length, global efficiency, clustering coefficient and local efficiency were calculated by graph theory analysis. The differences in functional connectivity and network parameters between AE group and control group and intra-class of AE group were compared. Results Compared with control group, the functional connectivity(FC)was enhanced in AE group in frontotemporal parietal area, in delta and beta2 frequency band. Meanwhile, in beta2 frequency band, the clustering coefficient, global efficiency and local efficiency of AE group were increased, while the path length was decreased (P<0.05) , when compared with control group.  intra-class of AE group, compared with the inter-ictal, the path length was decreased before-ictal in delta, theta, alpha2, beta1 and beta 2 frequency bands, while the clustering coefficient, global efficiency and local efficiency were increased (P<0.05). The path length was decreased after-ictal, while the clustering coefficient, global efficiency and local efficiency were increased compared with inter-ictal (P<0.05). Conclusions There are abnormal changes of functional connectivity and network parameters among AE patients. At the same time, the functional connectivity and network parameters of AE patients were also changed during the process of absence seizure. The differences of brain network connectivity between before-ictal and inter-ictal were mainly manifested in network parameters, which may indicate that brain function not be fully recovered within a certain period of time after the termination of one absence seizure.

參考文獻(xiàn):

[1]Guo JN, Kim R, Chen Y, et al. Impaired consciousness in patients with absence seizures investigated by functional MRI, EEG, and behavioural measures: a cross-sectional study[J]. The Lancet Neurology, 2016,15(13): 1336-1345.
[2]Lüttjohann A, van Luijtelaar G. Dynamics of networks during absence seizure's on- and offset in rodents and man[J]. Frontiers in Physiology, 2015, 6: 16.
[3]Tangwiriyasakul C, Perani S, Centeno M, et al. Dynamic brain network states in human generalized spike-wave discharges[J]. Brain : a Journal of Neurology, 2018,141(10): 2981-2994.
[4]孫玉蕾,王小姍. 兒童失神癲癇的認(rèn)知功能損害研究進(jìn)展[J]. 癲癇雜志,2020,6(6):523-527.
[5] Xia MR, He Y. Functional connectomics from a "big data" perspective[J]. NeuroImage, 2017,160: 152-167.
[6]Sun J, Li Z, Tong S. Inferring functional neural connectivity with phase synchronization analysis: a review of methodology[J]. Computational and Mathematical Methods in Medicine, 2012, 2012: 239210.
[7]Li L, He L, Harris N, et al. Topographical reorganization of brain functional connectivity during an early period of epileptogenesis[J]. Epilepsia, 2021, 62(5): 1231-1243.
[8]Engel Jr J. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology[J]. Epilepsia, 2001,42(6):796-803.
[9]Dasdemir Y, Yildirim E, Yildirim S. Analysis of functional brain connections for positive-negative emotions using phase locking value[J]. Cognitive Neurodynamics, 2017, 11(6): 487-500.
[10] 董國亞,陳小剛,史姍姍,等. 相位同步性分析方法在癲癇研究中的應(yīng)用[J]. 北京生物醫(yī)學(xué)工程,2011, 30(3): 274-278.
Dong GY, Chen XG, Shi SS, et al. Application of phase synchronization in epilepsy studies[J]. Beijing Biomedical Engineering, 2011, 30(3): 274-278.
[11] Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems[J]. Nature Reviews Neuroscience, 2009, 10(3): 186-198.
[12] Bullmore E, Sporns O. The economy of brain network organization[J]. Nature Reviews Neuroscience, 2012, 13(5): 336-349.
[13] He Y, Evans A. Graph theoretical modeling of brain connectivity[J]. Current Opinion in Neurology, 2010, 23(4): 341-350.
[14] Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations[J]. Neuroimage,2010,52(3):1059-1069.
[15] Achard S, Bullmore E. Efficiency and cost of economical brain functional networks[J]. PLoS Computational Biology, 2007, 3(2): e17.
[16] Liu L, Rosjat N, Popovych S, et al. Age-related changes in oscillatory power affect motor action[J]. PLoS One, 2017,12(11): e0187911.
[17] Lechinger J, Wielek T, Blume C, et al. Event-related EEG power modulations and phase connectivity indicate the focus of attention in an auditory own name paradigm[J]. Journal of Neurology, 2016, 263(8): 1530-1543.
[18]Wang Z, Larivière S, Xu Q, et al. Community-informed connectomics of the thalamocortical system in generalized epilepsy[J]. Neurology, 2019, 93(11): e1112-e1122.
[19]Abarrategui B, Parejo-Carbonell B, García García ME, et al. The cognitive phenotype of idiopathic generalized epilepsy[J]. Epilepsy &Behavior: E&B, 2018, 89: 99-104.
[20]Yu H, Zhu L, Cai L, et al. Variation of functional brain connectivity in epileptic seizures: an EEG analysis with cross-frequency phase synchronization[J]. Cognitive Neurodynamics, 2020, 14(1): 35-49.
[21]Liao W, Zhang Z, Mantini D, et al. Dynamical intrinsic functional architecture of the brain during absence seizures[J]. Brain Structure & Function, 2014, 219(6): 2001-2015.
[22]Moeller F, LeVan P, Muhle H, et al. Absence seizures: individual patterns revealed by EEG-fMRI[J]. Epilepsia, 2010, 51(10): 2000-2010.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]