51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
一種基于延時交錯時鐘采樣的超聲生物顯微鏡成像方法

A imaging method of ultrasound biomicroscopy based on delayed interlaced clock sampling mode

作者: 王效寧  鞏麗文  王曉春  周盛 
單位:中國醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院生物醫(yī)學(xué)工程研究所(天津 300192),<br />天津邁達(dá)醫(yī)學(xué)科技股份有限公司(天津 300384),<br />通信作者:周盛,副研究員,碩士生導(dǎo)師。E-mail:[email protected]
關(guān)鍵詞: 超聲生物顯微鏡;采樣率;延時交錯時鐘;可編程邏輯器件 
分類號:&nbsp;R318.04&nbsp;
出版年·卷·期(頁碼):2022·41·4(374-380)
摘要:

目的 超聲生物顯微鏡通常采用頻率為35 MHz及以上超聲波,用于人體淺表組織精細(xì)成像,其系統(tǒng)的模數(shù)轉(zhuǎn)換器的采樣率通常需要高于200 MHz。因此,傳統(tǒng)超聲診斷設(shè)備中的數(shù)據(jù)采集硬件方案,難以實現(xiàn)超聲生物顯微鏡的數(shù)字化成像。本文提出一種交錯時鐘采樣方法,通過單路ADC采集電路,可實現(xiàn)4倍頻數(shù)據(jù)采樣率的高頻超聲實時成像系統(tǒng),其性能指標(biāo)達(dá)到臨床診斷的需要。方法 基于可編程邏輯器件,通過構(gòu)建相位相差90°的4組80 MHz采樣時鐘,分別對相鄰的4條掃描線進行采樣。設(shè)計分時采樣控制模塊和四通道數(shù)據(jù)緩存器,將回波數(shù)據(jù)逐一插點拼接,達(dá)到與采樣頻率320 MHz相當(dāng)?shù)膱D像效果。結(jié)果 通過鎢絲測試線靶測試,軸向、側(cè)向分辨力達(dá)到50 μm,并采用離體豬眼球進行體外成像,圖像的信噪比和顯示范圍符合診斷要求。結(jié)論 該方法是設(shè)計高頻超聲診斷系統(tǒng)數(shù)據(jù)采集模塊的一種可行性方案,可有效降低硬件需求,實現(xiàn)了超聲生物顯微鏡實時數(shù)字化成像的目標(biāo),具備較好的臨床應(yīng)用前景。

Objective Ultrasound Biomicroscopy usually uses ultrasonic waves at a frequency of 35 MHz and above for fine imaging of human superficial tissues. The sampling rate of its system's analog-to-digital converter is usually higher than 200MHz. Therefore, it is difficult to realize the digital imaging by ultrasound biomicroscopy with the hardware scheme of data acquisition in traditional ultrasound diagnostic equipment. In this paper, a interlaced clock sampling method is proposed. Through a acquisition circuit with a single ADC, a high-frequency ultrasound real-time imaging system with 4 times of frequency data sampling rate can be realized, and its performance can meet the needs of clinical diagnosis. Methods Based on a FPGA, four sets of 80 MHz sampling clocks with a phase difference of 90° were constructed to sample four adjacent scan lines. A time-sharing sampling control module and a four-channel data cache were designed to splice echo data one by one to achieve an imaging effect equivalent to the sampling frequency of 320 MHz. Results The axial and lateral resolution reaches 50 μm by tungsten wire test. In vitro imaging was carried out using a porcine eyeball, and the signal-to-noise ratio and the detection depth of the image both met the diagnostic requirements. Conclusions This method is a feasible scheme for the design of data acquisition module of high-frequency ultrasound diagnosis system, which can effectively reduce the hardware requirements and achieve the goal of real-time digital imaging of ultrasound biomicroscopy, and has a good clinical application prospect. 

參考文獻:

[1] Wang WS, Wang LX, Wang T, et al. Automatic localization of the scleral spur using deep ? learning and ultrasound biomicroscopy[J]. Translational Vision Science & Technology, 2021, 10(9): 28.
[2] Bhatt V, Bhatt D, Barot R, et al. Ultrasound biomicroscopy for zonular evaluation in eyes with ocular trauma [J]. Clinical Ophthalmology, 2021, 15: 3285-3291.
[3] Chen WS, He SP, Hu LX, et al. Ultrasound biomicroscopy for the assessment of postoperative complications after congenital cataract surgery[J]. Quantitative imaging in medicine and surgery, 2021, 11(4): 1483-1489.
[4] Kaliki S, Jajapuram SD, Maniar A, et al. Ocular surface squamous neoplasia with intraocular tumour extension: a study of 23 patients [J]. Eye, 2020, 34: 319-326.
[5] 王子, 王曦曦, 朱強, 等. 超聲影像在皮膚病變診斷中的應(yīng)用研究[J]. 中華醫(yī)學(xué)超聲雜志(電子版), 2019, 16(6):407-418.
Wang Z,Wang XX, Zhu Q, et al. Sonographic manifestations of skin diseases: a preliminary study[J]. Chinese Journal of Medical Ultrasound(Electronic Edition), 2019, 16(6): 407-418.
[6] Wang XC, Yang J, Ji JJ, et al. Research on Golay-coded excitation in real-time imaging of high frequency ultrasound biomicroscopy[J]. Scientifc Reports, 2021, 11: 1848.
[7] Lim HG, Kim HH, Yoon Changhan. Synthetic Aperture Imaging Using High-Frequency Convex Array for Ophthalmic Ultrasound Applications[J]. Sensors, 2021, 21(7): 2275.
[8] Urs R, Kettering JA, Tezel G, et al. Contrast-enhanced plane-wave ultrasound imaging of the rat eye[J]. Experimental Eye Research, 2020, 193: 107986.
[9] Qiu WB, Xia JJ, Shi YL, et al. A delayed-excitation data acquisition method for high-frequency ultrasound imaging [J]. IEEE Transactions on Biomedical Engineering, 2018, 65(1): 15-20.
[10] 王曉春, 楊軍, 計建軍,等. 一種甚高頻醫(yī)學(xué)超聲回波信號高速數(shù)據(jù)采集系統(tǒng)的設(shè)計[J]. 醫(yī)療衛(wèi)生裝備, 2017, 38(11): 1-4,9.
Wang XC, Yang J, Ji JJ, et al. Design of high-speed data acquisition system for very high frequency medical ultasonic echo signals[J]. Chinese Medical Equipment Journal, 2017, 38(11): 1-4, 9.
[11] Jiang Z, Zhao L, Gao X, et al. Mismatch error correction for time interleaved analog-to-digital converter over a wide frequency range[J]. Review of Scientific Instruments, 2018, 89(8): 084709.
[12] Ramkumar A, Thittai AK. Strategic undersampling and recovery using compressed sensing for enhancing ultrasound image quality [J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2020, 67(3): 547-556.
[13] Mitrovic J, Ignjatovic Z, Pietra LL, et al. Compressed sensing for reduced hardware footprint in medical ultrasound [J]. Ultrasonics, 2020, 108: 106214.
[14] Yousufi M, Amir M, Javed U, et al. Application of compressive sensing to ultrasound images: a review [J]. Biomed Research International, 2019, 2019: 786165.
[15] 王曉春, 楊軍, 計建軍,等. 基于Golay互補序列的20 MHz眼科超聲成像方法[J]. 北京生物醫(yī)學(xué)工程, 2021, 40(2):167-173.
Wang XC, Yang J, Ji JJ, et al. A method of 20 MHz ophthalmic ultrasound imaging based on Golay complementary sequence[J]. Beijing Biomedical Engineering, 2021, 40(2):167-173.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]