51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
組織工程人工膽管的研究進展

Research progress of tissue engineered artificial bile duct

作者: 袁琪  徐雯  周文策 
單位:蘭州大學(xué)第一臨床醫(yī)學(xué)院 (蘭州 730013),<br />河西學(xué)院附屬張掖人民醫(yī)院 ( 甘肅張掖 734099),<br />通信作者:周文策。E-mail: [email protected]
關(guān)鍵詞: 組織工程;人工膽管;膽管狹窄;研究進展;生物3D打印 
分類號:R318.08&nbsp;
出版年·卷·期(頁碼):2022·41·4(424-428)
摘要:

膽管損傷后膽管狹窄是膽管疾病術(shù)后常見的并發(fā)癥,其主要通過手術(shù)治療,大部分患者術(shù)后膽道梗阻癥狀在短期內(nèi)可以得到良好的改善,然而長期預(yù)后不容樂觀。組織工程是一門新型技術(shù),隨著組織工程材料的不斷發(fā)展,其在可吸收性、生物相容性及促組織再生等方面的優(yōu)勢使得人工膽管在膽管損傷后膽管狹窄修復(fù)中的應(yīng)用成為可能,近年來生物3D打印技術(shù)的出現(xiàn)不但提高了制作人工膽管的精度,而且滿足了按需打印的個體化差異要求,進一步推動了組織工程人工膽管的發(fā)展,使其成為未來膽管狹窄治療的又一重要方式。

Biliary stricture after bile duct injury is a common postoperative complication of bile duct disease, which is mainly treated by surgery. Most patients with postoperative biliary obstruction can get a good improvement in the short term, but the long-term prognosis is not optimistic. Tissue engineering is a new technology, with the continuous development of tissue engineering material, its absorbability, biocompatibility, and promoting tissue regeneration and other advantages of making artificial bile duct in the application of bile duct stricture repair after injury of bile duct, in recent years, the emergence of biological 3 d printing technology not only enhances the precision of making artificial bile duct. Moreover, it meets the requirement of individualized difference of on-demand printing, further promotes the development of tissue engineered artificial bile duct, and makes it become another important way for the treatment of bile duct stricture in the future.

參考文獻:

[1] 黃志強. 經(jīng)驗值得注意——再論膽管損傷與損傷性膽管狹窄[J]. 中國實用外科雜志, 2011, 31(7): 551-553.
Huang ZQ. Re-discussion of bile duct injury and traumatic bile duct stenosis [J].Chinese Journal of Practical Surgery, 2011, 31(7): 551-553.
[2]黃志強. 必須重視腹腔鏡膽囊切除術(shù)的安全性[J]. 中華外科雜志, 1995, 33(11):645-646.
[3] Andersson R, Eriksson K, Blind PJ, et al. Iatrogenic bile duct injury — a cost analysis[J]. HPB: the official journal of the International Hepato Pancreato Biliary Association, 2008, 10(6):416-419.
[4] Stilling NM, Fristrup C, Wettergren A, et al. Long-term outcome after early repair of iatrogenic bile duct injury. A national Danish multicentre study[J]. HPB: the official journal of the International Hepato Pancreato Biliary Association, 2015,17(5): 394-400.
[5]王敬, 黃曉強, 周寧新,等. 醫(yī)源性膽管狹窄的手術(shù)治療[J]. 中華消化外科雜志, 2008, 7(5):342-344.
Wang J, Huang XQ, Zhou NX, et al. Surgical treatment of iatrogenic bile duct strictures [J]. Chinese Journal of Digestive Surgery, 2008, 7(5): 342-344.
[6]中國科學(xué)院.中國學(xué)科發(fā)展戰(zhàn)略?再生醫(yī)學(xué)[M].北京:科學(xué)出版社,2018.
[7]Biglari M, Van den Bussche D, Vanlangenhove P, et al. Reconstruction of a Common Bile Duct Injury by Venous Bypass[J]. Acta Chirurgica Belgica, 2016, 113(4): 308-310.
[8] Crema E, Trentini EA, Teles CJO, et al. Laparoscopic reconstruction of the extrahepatic bile duct using a jejunal tube: an innovative, more physiological and anatomical technique for biliodigestive derivation[J]. Journal of Surgical Case Reports, 2014,2014(1): rjt106.
[9] Logmans A, Schoenmakers C, Haensel SM, et al. High tissue factor concentration in the omentum, a possible cause of its hemostatic properties[J]. European Journal of Clinical Investigation, 1996, 26(1):82-83.
[10] Uchibori T, Takanari K, Hashizume R, et al. Use of a pedicled omental flap to reduce inflammation and vascularize an abdominal wall patch[J]. Journal of Surgical Research, 2017, 212: 77-85.
[11] Normand C, Linde C, Bogale N, et al. Cardiac resynchronization therapy pacemaker or cardiac resynchronization therapy defibrillator: what determines the choice—findings from the ESC CRT Survey II[J].Europace, 2019, 21(6): 918-927.
[12] Struecke B, Hillebrandt KH, Raschzok N, et al. Implantation of a tissue-engineered neo-bile duct in domestic pigs[J]. European Surgical Research, 2015, 56(1-2): 61-75.
[13] Chakhunashvili K, Kiladze M, Chakhunashvili DG, et al. A three-dimensional scaffold from decellularized human umbilical artery for bile duct reconstruction[J]. Annali Italiani di Chirurgia, 2019, 90(2): 165-173.
[14] Cheng Y, Xiong XZ, Zhou RX, et al. Repair of a common bile duct defect with a decellularized ureteral graft[J]. World Journal of Gastroenterology, 2016, 22(48): 10575-10583.
[15] Negishi J, Funamoto S, Kimura T, et al. Porcine radial artery decellularization by high hydrostatic pressure[J]. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9(11): E144-E151.
[16] Krasilnikova AA, Sergeevichev DS, Fomenko VV, et al. Globular chitosan treatment of bovine jugular veins: Evidence of anticalcification efficacy in the subcutaneous rat model[J]. Cardiovascular Pathology, 2017, 32:1-7.
[17]Sheridan WS, Ryan AJ, Duffy GP, et al. An experimental investigation of the effect of mechanical and biochemical stimuli on cell migration within a decellularized vascular construct[J]. Annals of Biomedical Engineering, 2014, 40(10): 2029-2038.
[18]Bai H, Dardik A, Xing Y. Decellularized carotid artery functions as an arteriovenous graft[J]. Journal of Surgical Research, 2019, 234: 33-39.
[19] Hussey GS, Molina CP, Cramer MC, et al. Lipidomics and RNA sequencing reveal a novel subpopulation of nanovesicle within extracellular matrix biomaterials[J]. Science Advances, 2020, 6(12): aay4361.
[20] Huleihel L, Hussey GS, Naranjo JD, et al. Matrix-bound nanovesicles within ECM bioscaffolds[J]. Science Advances, 2016, 2(6):e1600502.
[21] Liao J, Xu B, Zhang R, et al. Applications of decellularized materials in tissue engineering: advantages, drawbacks and current improvements, and future perspectives[J]. Journal of Materials Chemistry B, 2020, 8(44): 10023-10049.
[22] Dorati R, DeTrizio A, Modena T, et al. Biodegradable scaffolds for bone regeneration combined with drug-delivery systems in osteomyelitis therapy[J]. Pharmaceuticals, 2017, 10(4): 96.
[23] Ghassemi T, Shahroodi A, Ebrahimzadeh MH, et al. Current concepts in scaffolding for bone tissue engineering[J]. The Archives of Bone and Joint Surgery, 2018, 6(2): 90-99.
[24] Bahrami R, Zibaei R, Hashami Z, et al. Modification and improvement of biodegradable packaging films by cold plasma; a critical review[J]. Critical Reviews in Food Science and Nutrition, 2020, 62(7): 1936-1950.
[25] Kim MJ, Kim HB, Han JK , et al. Injuries of adjacent organs by the expanded polytetrafluoroethylene grafts in the venoplasty of middle hepatic veins in living-donor liver transplantation: computed tomographic findings and possible risk factors[J]. Journal of Computer Assisted Tomography, 2011, 35(5): 544-548.
[26] Miyazawa M, Torii T, Toshimitsu Y, et al. A tissue‐engineered artificial bile duct grown to resemble the native bile duct[J]. American Journal of Transplantation, 2015, 5(6):1541-1547.
[27] LiQ, Tao L, Chen B, et al. Extrahepatic bile duct regeneration in pigs using collagen scaffolds loaded with human collagen-binding bFGF[J]. Biomaterials, 2012, 33(17): 4298-4308.
[28]Zong C, Wang M, Yang F, et al. A novel therapy strategy for bile duct repair using tissue engineering technique: PCL/PLGA bilayered scaffold with hMSCs[J]. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11(4): 966-976.
[29] Cai Z, Yang G. Research progress in electrospinning technique for biomedical materials[J]. Journal of Biomedical Engineering, 2010, 27(6): 1389-1392.
[30] Scotchford CA. Cell response to surface chemistry in biomaterials[M]//Cellular Response to Biomaterials A volume in Woodhead Publishing Series in Biomaterials. Boca Raton: CRC Woodhead, 2009: 462-478. ? ?
[31] Yan M, Lewis PL, Shah RN. Tailoring nanostructure and bioactivity of 3D printable hydrogels with self-assemble Peptides Amphiphile (PA) for promoting bile duct formation[J]. Biofabrication, 2018, 10(3): 035010.
[32] Xiang Y, Wang W, Gao Y, et al. Production and characterization of an integrated multi-layer 3D printed PLGA/GelMA scaffold aimed for bile duct restoration and detection[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 971.
[33] Hamada T, Nakamura A, Soyama A, et al. Bile duct reconstruction using scaffold-free tubular constructs created by Bio-3D printer[J]. Regenerative Therapy, 2021, 16:81-89.
[34] Ihalainen P, M??tt?nen A, Sandler N. Printing technologies for biomolecule and cell-based ?applications[J]. ?International Journal of Pharmaceutics, 2015, 494: 585–592.
[35] Calvert P. Inkjet printing for materials and devices[J]. Chemistry of Materials, 2001, 13(10):3299-3305.
[36] Matai I, Kaur G, Seyedsalehi A, et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering[J]. Biomaterials, 2020, 226: 119536.
[37] Murphy SV, Atala A. 3D bioprinting of tissues and organs[J]. Nature Biotechnology, 2014, 32: 773–785.?
[38] Mandrycky C, Wang Z, Kim K, et al. 3D bioprinting for engineering complex tissues[J]. Biotechnology Advances, 2016, 34(4): 422-434.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]