51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
生物礦化膠原在骨缺損治療中的研究及應用現(xiàn)狀

Research and application status of biomineralized collagen in the treatment of bone defect

作者: 孫守野  李少榮  崔宇韜  許航  王靖瑋  陳沖  王雁冰  彭傳剛 
單位:吉林大學第二醫(yī)院(長春 &nbsp;130041),<br />通信作者:彭傳剛。E-mail: pengcg@ jlu. edu. cn
關(guān)鍵詞: 生物礦化膠原;藥物載體;骨缺損;臨床應用;骨組織工程 
分類號:R318.08
出版年·卷·期(頁碼):2022·41·4(429-435)
摘要:

因感染、外傷或骨腫瘤切除引起的骨缺損非常普遍,其中一小部分(5%~10%)由于骨不連而無法愈合,需要手術(shù)治療。目前,治療這些缺損的主要方法有自體移植物、異種移植物、異體移植物或合成移植物。與這些治療相關(guān)的主要問題包括感染、疼痛和供區(qū)發(fā)病率。生物礦化膠原是由膠原和羥基磷灰石組成的新型、安全的骨移植替代材料,不僅自身具有治療骨缺損的能力,而且其優(yōu)良的生物相容性、機械性能,還可以作為一種兼容、堅固的載體,通過搭載一些促進血管生長或者骨生長的藥物,共同發(fā)揮成骨作用。同時,礦化膠原還能自身降解,避免了二次手術(shù)的痛苦。本文介紹了生物礦化膠原的定義、結(jié)構(gòu),總結(jié)了生物礦化膠原的合成方法、作用機制,分析了生物礦化膠原在骨缺損治療方面的應用,從而證明了生物礦化膠原材料在骨缺損治療方面的良好應用前景。

Bone defects caused by infection, trauma or bone tumor resection are very common, and a small part ( 5 % -10 % ) of them cannot heal due to nonunion, requiring surgical treatment. At present, the main methods for the treatment of these defects are autologous graft, xenotransplantation allogeneic graft or synthetic graft. The main problems related to these treatments include infection, pain and donor site morbidity. Biomineralized collagen is a new and safe alternative material for bone transplantation composed of collagen and hydroxyapatite. It not only has the ability to treat bone defects, but also has excellent biocompatibility and mechanical properties. It can also be used as a compatible and solid carrier to jointly exert the osteogenic effect by carrying some drugs that promote vascular growth or bone growth. At the same time, the mineralized collagen can also degrade itself, thus avoiding the pain of the second operation. In this paper, the definition and structure of biomineralized collagen were introduced, the synthetic methods and action mechanism of biomineralized collagen were summarized, and the application of biomineralized collagen in the treatment of bone defect was analyzed, which proved the good application prospect of biomineralized collagen material in the treatment of bone defect.

參考文獻:

[1] Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering[J]. Acta Biomaterialia, 2011, 7(7): 2769-2781.
[2] Poinern GE, Brundavanam RK, Mondinos N, et al. Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method[J]. Ultrasonics Sonochemistry, 2009, 16(4): 469-474.
[3] Orgel J, Miller A, Irving TC, et al. The in situ supermolecular structure of type I collagen[J]. Structure, 2001, 9(11): 1061-1069.
[4] Stamov DR, Stock E, Franz CM, et al. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution[J]. Ultramicroscopy, 2015, 149: 86-94.
[5] Cui FZ, Li Y, Ge J. Self-assembly of mineralized collagen composites[J]. Materials Science and Engineering: R: Reports, 2007, 57(1-6): 1-27.
[6] Qiu ZY, Cui Y, Tao CS, et al. Mineralized collagen: rationale, current status, and clinical applications[J]. Materials (Basel), 2015, 8(8): 4733-4750.
[7] Ambre AH, Katti DR, Katti KS. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering[J]. Journal of Biomedical Materials Research Part A, 2015, 103(6): 2077-2101.
[8] Leng Y, Yang F, Wang Q, et al. Material-based therapy for bone nonunion[J]. Materials & Design, 2019, 183 : 108161.
[9] Holmes D. Non-union bone fracture: a quicker fix[J]. Nature, 2017, 550(7677): S193.
[10] Cui Y, Zhu T, Li D, et al. Bisphosphonate-functionalized scaffolds for enhanced bone regeneration[J]. Advanced Healthcare Materials, 2019, 8(23): 1901073.
[11] Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration[J]. Materials (Basel), 2019, 12(4): 568.
[12] De Mori A, Fernández PM, Blunn G, et al. 3D printing and electrospinning of composite hydrogels for cartilage and bone tissue engineering[J]. Polymers (Basel), 2018, 10(3): 285.
[13] Scott TG, Blackburn G, Ashley M, et al. Advances in bionanomaterials for bone tissue engineering[J]. Journal of Nanoscience Nanotechnology, 2013, 13(1): 1-22.
[14] Nudelman F, Lausch AJ, Sommerdijk N, et al. In vitro models of collagen biomineralization[J]. Journal of Structural Biology, 2013, 183(2): 258-269.
[15] Tracy BM, Doremus RH. Direct electron microscopy studies of the bone—hydroxylapatite interface[J]. Journal of Biomedical Materials Research, 2018,18(7): 719-726.
[16] Gross U, Stranz V. The interface of various glasses and glass ceramics with a bony implantation bed[J]. Journal of Biomedical Materials Research, 2019, 19(3): 251-271.
[17] Zhong L, Qu Y, Shi K, et al. Biomineralized polymer matrix composites for bone tissue repair: a review[J]. Science China Chemistry, 2018, 61(12): 1553-1567.
[18] Rhee SH, Lee JD, Tanaka J. Nucleation of hydroxyapatite crystal through chemical interaction with collagen[J]. Journal of the American Ceramic Society, 2000, 83(11): 2890-2892.
[19] Zhang W, Huang ZL, Liao SS, et al. Nucleation sites of calcium phosphate crystals during collagen mineralization[J]. Journal of the American Ceramic Society, 2003, 86(6): 1052-1054.
[20] Wang Y, Azais T, Robin M, et al. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite[J]. Nature Materials, 2012, 11(8): 724-733.
[21] Landis WJ, Silver FH. Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen[J]. Cells Tissues Organs, 2009, 189(1-4): 20-24.
[22] Bradt JH, Mertig M, Teresiak A, et al. Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation[J]. Chemistry of Materials, 1999, 11(10): 2694-2701.
[23] Zhang Z, Zhang C, Guo Q, et al. Application of recombinant collagen type Ⅰ combined with polyaspartic acid in biomimetic biomineralization[J]. Acta Academiae Medicinae Sinicae, 2017, 39(3): 318-323.
[24] Yang C, Li J, Zhu C, et al. Advanced antibacterial activity of biocompatible tantalum nanofilm via enhanced local innate immunity[J]. Acta Biomaterialia, 2019, 89: 403-418.
[25] Maas M, Guo P, Keeney M, et al. Preparation of mineralized nanofibers: collagen fibrils containing calcium phosphate[J]. Nano Letters, 2011, 11(3): 1383-1388.
[26] Ficai A, Andronescu E, Voicu G, et al. Self-assembled collagen/hydroxyapatite composite materials[J]. Chemical Engineering Journal, 2010, 160(2): 794-800.
[27] Park JS, Chu JS, Tsou AD, et al. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β[J]. Biomaterials, 2011, 32(16): 3921-3930.
[28] Miron-Mendoza M, Seemann J, Grinnell F. The differential regulation of cell motile activity through matrix stiffness and porosity in three dimensional collagen matrices[J]. Biomaterials, 2010, 31(25): 6425-6435.
[29] Lin X, Shi Y, Cao Y, et al. Recent progress in stem cell differentiation directed by material and mechanical cues[J]. Biomedical Materials, 2016, 11(1): 014109.
[30] de Melo Pereira D, Eischen-Loges M, Birgani ZT, et al. Proliferation and osteogenic differentiation of hMSCs on biomineralized collagen[J]. Frontiers in Bioengineering Biotechnology, 2020, 8: 554565.
[31] Zan X, Sitasuwan P, Feng S, et al. Effect of roughness on in situ biomineralized CaP-collagen coating on the osteogenesis of mesenchymal stem cells[J]. Langmuir, 2016, 32(7): 1808-1817.
[32] Wang J, Qu Y, Chen C, et al. Fabrication of collagen membranes with different intrafibrillar mineralization degree as a potential use for GBR[J]. Materials Science & Engineering. C: Materials for Biological Applications, 2019, 104: 109959.
[33] Boraschi-Diaz I, Mort JS, Br?mme D, et al. Collagen type I degradation fragments act through the collagen receptor LAIR-1 to provide a negative feedback for osteoclast formation[J]. Bone, 2018, 117: 23-30.
[34] Wang J, Yang Q, Mao C, et al. Osteogenic differentiation of bone marrow mesenchymal stem cells on the collagen/silk fibroin bi-template-induced biomimetic bone substitutes[J]. Journal of Biomedical Materials Research Part A, 2012, 100A(11): 2929-2938.
[35] Yang M, Zhou G, Castano-Izquierdo H, et al. Biomineralization of natural collagenous nanofibrous membranes and their potential use in bone tissue engineering[J]. Journal of Biomedical Nanotechnology, 2015, 11(3): 447-456.
[36] Huang C, Qin L, Yan W, et al. Clinical evaluation following the use of mineralized collagen graft for bone defects in revision total hip arthroplasty[J]. Regenerative Biomaterials, 2015, 2(4): 245-249.
[37] Mohammadi M, Shaegh SAM, Alibolandi M, et al. Micro and nanotechnologies for bone regeneration: recent advances and emerging designs[J]. Journal of Controlled Release, 2018, 274: 35-55.
[38] Hassanzadeh A, Ashrafihelan J, Salehi R, et al. Development and biocompatibility of the injectable collagen/nano-hydroxyapatite scaffolds as in situ forming hydrogel for the hard tissue engineering application[J]. Artificial Cells Nanomedicine and Biotechnology, 2021, 49(1): 136-146.
[39] Qiu ZY, Tao CS, Cui H, et al. High-strength mineralized collagen artificial bone[J]. Frontiers of Materials Science, 2014, 8(1): 53-62.
[40] Chen Z, Wang J, Qiu ZY, et al. The application of mineralized collagen bone grafts in osteoporotic thoracolumbar fractures[J]. Journal of Biomaterials and Tissue Engineering, 2017, 7(11): 1122-1129.
[41] Gao C, Qiu ZY, Hou JW, et al. Clinical observation of mineralized collagen bone grafting after curettage of benign bone tumors[J]. Regenerative Biomaterials, 2020, 7(6): 567-575.
[42] Zhang Z, Zhang S, Li Z, et al. Osseointegration effect of biomimetic intrafibrillarly mineralized collagen applied simultaneously with titanium implant: a pilot in vivo study[J]. Clinical Oral Implants Research, 2019, 30(7): 637-648.
[43] Wang F, Wang L, Feng Y, et al. Evaluation of an artificial vertebral body fabricated by a tantalum-coated porous titanium scaffold for lumbar vertebral defect repair in rabbits[J]. Scientific Reports, 2018, 8(1): 8927.
[44] Lian X, Liu H, Wang X, et al. Antibacterial and biocompatible properties of vancomycin-loaded nano-hydroxyapatite/collagen/poly (lactic acid) bone substitute[J]. Progress in Natural Science: Materials International, 2013, 23(6): 549-556.
[45] He Y, Jin Y, Ying X, et al. Development of an antimicrobial peptide-loaded mineralized collagen bone scaffold for infective bone defect repair[J]. Regenerative Biomaterials, 2020, 7(5): 515-525.
[46] Lu M, Liao J, Dong J, et al. An effective treatment of experimental osteomyelitis using the antimicrobial titanium/silver-containing nHP66 (nano-hydroxyapatite/polyamide-66) nanoscaffold biomaterials[J]. Scientific Reports, 2016, 6(1): 39174.
[47] Boda SK, Almoshari Y, Wang H, et al. Mineralized nanofiber segments coupled with calcium-binding BMP-2 peptides for alveolar bone regeneration[J]. Acta Biomaterialia, 2019, 85: 282-293.
[48] Wang E, Han J, Zhang X, et al. Efficacy of a mineralized collagen bone-grafting material for peri-implant bone defect reconstruction in mini pigs[J]. Regenerative Biomaterials, 2019, 6(2): 107-111.
[49] Zhang C, Yan B, Cui Z, et al. Bone regeneration in minipigs by intrafibrillarly-mineralized collagen loaded with autologous periodontal ligament stem cells[J]. Scientific Reports, 2017, 7(1): 10519.
[50] Sun Y, Wang C, Chen Q, et al. Effects of the bilayer nano-hydroxyapatite/mineralized collagen-guided bone regeneration membrane on site preservation in dogs[J]. Journal of Biomaterials Applications, 2017, 32(2): 242-256.
[51] Yu Q, Wang C, Yang J, et al. Mineralized collagen/Mg-Ca alloy combined scaffolds with improved biocompatibility for enhanced bone response following tooth extraction[J]. Biomedical Materials, 2018, 13(6): 065008.
[52] Tiffany AS, Gray DL, Woods TJ, et al. The inclusion of zinc into mineralized collagen scaffolds for craniofacial bone repair applications[J]. Acta Biomaterialia, 2019, 93: 86-96.
[53] Rajendra PB, Mathew TP, Agrawal A, et al. Characteristics of associated craniofacial trauma in patients with head injuries: An experience with 100 cases[J]. Journal of Emergencies, Trauma, and Shock, 2009, 2(2): 89-94.
[54] Carvalho TBO, Cancian LRL, Marques CG, et al. Six years of facial trauma care: an epidemiological analysis of 355 cases[J]. Brazilian Journal of Otorhinolaryngology, 2010,76(5): 565-574.
[55] Wang S, Zhao Z, Yang Y, et al. A high-strength mineralized collagen bone scaffold for large-sized cranial bone defect repair in sheep[J]. Regenerative Biomaterials, 2018, 5(5): 283-292.
[56] Ren X, Tu V, Bischoff D, et al. Nanoparticulate mineralized collagen scaffolds induce in vivo bone regeneration independent of progenitor cell loading or exogenous growth factor stimulation[J]. Biomaterials, 2016, 89: 67-78.
[57] Liu S, Sun Y, Fu Y, et al. Bioinspired collagen-apatite nanocomposites for bone regeneration[J]. Journal of Endodontics, 2016, 42(8): 1226-1232.

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]