51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯系我們
基于深度遷移學習的老年人群眼底疾病輔助診斷研究

Fundus diseases of the elderly detection algorithm based on deep transfer learning

作者: 楊康  趙太宏 
單位:南京醫(yī)科大學公共衛(wèi)生學院(南京 211112);<br />南京醫(yī)科大學附屬南京醫(yī)院院長辦公室(南京 210006)<br />通信作者:趙太宏。E-mail:[email protected]
關鍵詞: 遷移學習;卷積神經網絡;眼底病變;眼底圖像;圖像分類 
分類號:&nbsp;R318.04&nbsp;
出版年·卷·期(頁碼):2022·41·5(465-470)
摘要:

目的 提出一種基于深度遷移學習的老年人群眼底疾病自動分類方法,為老年人眼底疾病提供輔助診斷分析。方法 以2 048張眼底圖像作為原始眼底數據集。首先,對眼底圖像進行去除模糊不清、圖像縮放和對比度調整等預處理操作。然后隨機將眼底圖像劃分成訓練組、驗證組和測試組。遷移卷積神經網絡(convolution neural network,CNN)在其他分類任務預訓練的參數,然后根據眼底病分類任務微調CNN模型全連接層參數,經過網絡優(yōu)化最終搭建眼底病分類診斷網絡模型。最后使用獨立的測試集對網絡模型進行測試,并通過混淆矩陣查看模型的分類情況。最終,以受試者工作特征曲線下面積(area under curve,AUC)、準確率、靈敏度、特異度和F1值等指標評價網絡模型對眼底病的分類診斷效果。結果 CNN模型在眼底病分類準確率均高于0.90,靈敏度在0.90~0.95范圍,特異度在0.89~0.95范圍,AUC在0.87~0.92范圍,F1值在0.92~0.94范圍。結論 提出基于遷移學習方法訓練的CNN模型以較高的準確率實現老年人眼底病的自動分類診斷,且具備訓練周期短和訓練參數少等優(yōu)勢。該方法將有助于提高基層社區(qū)對老年人群眼底疾病的輔助診斷能力。

Objective To propose an automatic classification method of fundus diseases for the elderly based on deep transfer learning, and to provide auxiliary diagnosis and analysis of fundus diseases for the elderly.  Methods Total of 2048 fundus images were used as the original fundus dataset. First, the fundus image is preprocessed, such as removing blur, image scaling and contrast adjustment.Then,The fundus images were randomly divided into training group, validation group and testing group. The parameters of the convolutional neural network (CNN) pre-trained in other classification tasks were transferred, and then the parameters of the fully connected layer of the CNN model were fine-tuned according to the fundus disease classification task. After network optimization, the fundus disease classification and diagnosis network model was finally built. Finally, an independent test set was used to test the network model, and the classification of the model was checked through the confusion matrix. At last, the classification and diagnosis effect of the network model on fundus diseases was evaluated by indicators such as area under curve (AUC), accuracy, sensitivity, specificity and F1 score.  Results The classification accuracy of CNN model in fundus diseases was higher than 0.90, the sensitivity was in the range of 0.90-0.95, the specificity was in the range of 0.89-0.95, the AUC was in the range of 0.87-0.92, and the F1 score was in the range of 0.92-0.94.  Conclusions The CNN model trained based on the transfer learning method is proposed to achieve automatic classification and diagnosis of fundus diseases in the elderly with high accuracy, and has the advantages of short training period and few training parameters. This method will help to improve the auxiliary diagnosis ability of the elderly population for fundus diseases in the grass-roots community.

參考文獻:

[1] 高華, 陳秀念, 史偉云. 我國盲的患病率及主要致盲性疾病狀況分析[J]. 中華眼科雜志, 2019, 55(8): 625-628.
Gao H,Chen XN,Shi WY. Analysis of the prevalence of blindness and major blinding diseases in China[J].Chinese Journal of Ophthalmology,2019,55(8):625-628
[2] 佟甜, 姜艷華. 老年性黃斑變性發(fā)病率及危險因素分析[J]. 國際醫(yī)藥衛(wèi)生導報, 2019, 25(1): 14-16.
[3] 中華醫(yī)學會眼科學分會眼視光學組. 重視高度近視防控的專家共識(2017)[J]. 中華眼視光學與視覺科學雜志, 2017, 19(7): 385-389
[4] 沈亞琴, 楊梅, 劉必紅, 等. 江蘇省糖尿病眼病研究中阜寧縣50歲以上2型糖尿病患者盲和中重度視力損傷的流行病學調查[J]. 中華眼科雜志, 2020, 56(8): 593-599
Shen YQ,Yang M,Liu BH ,et al. Jiangsu diabetic eye disease study:epidemiological survey of blindness and moderate or severe visual impairment in people with type 2 diabetes over 50 years old in Funing County [J].Chinese Journal of Ophthalmology,2020,56(8):593-599.
[5] 陳戰(zhàn)巧, 俞頌平. 浙江省南部地區(qū)畬族老年人群眼病流行病學調查研究[J]. 中國預防醫(yī)學雜志, 2020, 21(10): 1099-1103.
Chen ZQ,Yu SP. The research on epidemiological investigation and preventive measures of eye diseases in the elderly of the she nationality in southern zhejiang.[J]. Chinese Preventive Medicine,2020,21(10):1099-1103.
[6] 魏串串, 劉雪, 王爽, 等. 40歲以上中老年人視網膜血管彎曲度的橫斷面調查——北京眼病研究[J]. 眼科, 2021, 30(2): 97-101.
Wei CC,Liu X,Wang S,et al. Cross-sectional study of retinal vascular tortuosity in elderly population-Beijing eye study.[J]. Ophthalmology in China,2021,30(2):97-101.
[7] 吳曉蘭, 易全勇, 鄔一楠, 等. 寧波地區(qū)50歲及以上人群眼病流行病學調查[J]. 中華全科醫(yī)學, 2019, 17(3): 491-495.
[8] Xu T, Wang B, Liu H, et al. Prevalence and causes of vision loss in China from 1990 to 2019: findings from the Global Burden of Disease Study 2019[J]. The Lancet Public Health, 2020,5(12):e682-e691.
[9] Dewey M, Schlattmann P. Deep learning and medical diagnosis[J]. Lancet, 2019,394(10210):1710-1711.
[10] Cen LP, Ji J, Lin JW, et al. Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks[J]. Nature Communications, 2021,12(1):4828.
[11] Son J, Shin JY, Kim HD, et al. Development and validation of deep learning models for screening multiple abnormal findings in retinal fundus images[J]. Ophthalmology, 2020,127(1):85-94.
[12] 高爽, 徐巧枝. 遷移學習方法在醫(yī)學圖像領域的應用綜述[J]. 計算機工程與應用, 2021,57(24): 39-50.
Gao S, Xu QZ.Review of application of transfer learning inmedical image field[J].Computer Engineering and Applications,2021, 57(24): 39-50
[13] 趙蒙蒙, 魯貞貞, 朱書緣, 等. 基于卷積神經網絡的眼科光學相干斷層成像圖像的自動分類[J]. 北京生物醫(yī)學工程, 2021, 40(6): 557-563.
Zhao MM, Lu ZZ, Zhu SY,et al. Automatic classification of ophthalmic optical coherence tomography images based on the convolution neural network[J].Beijing Biomedical Engineering, 2021, 40(4):557-563.
[14] Zhang K, Sun M, Han TX, et al. Residual networks of residual networks: multilevel residual networks[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018,28(6):1303-1314.
[15] Ran W, Fu K, Hao S, et al. Image superresolution using densely connected residual networks[J]. IEEE Signal Processing Letters, 2018,25(10):1565-1569.
[16] Kanavati F, Toyokawa G, Momosaki S, et al. Weakly-supervised learning for lung carcinoma classification using deep learning[J]. Scientific Reports, 2020,10(1):9297.
[17] Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018,172(5):1122-1131.
[18] Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning[J]. Ophthalmology, 2017,124(7):962-969.
[19] Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016,316(22):2402-2410.
[20] Hua CH, Kim K, Huynh-The T, et al. Convolutional network with twofold feature augmentation for diabetic retinopathy recognition from multi-modal images[J]. IEEE Journal of Biomedical and Health Informatics, 2021,25(7):2686-2697.

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]