51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
3D 打印多孔 β-TCP 負(fù)載 VAN/ PLGA 緩釋微球復(fù)合支架的表征評(píng)價(jià)

Characterization and evaluation of 3D printed porous β-TCP scaffolds loaded with VAN/PLGA microsphere scaffold

作者: 王建  范江偉  陳洪濤 
單位:新疆醫(yī)科大學(xué)第六附屬醫(yī)院創(chuàng)傷骨科(烏魯木齊 830092)<br />通信作者:陳洪濤。E-mail:[email protected]
關(guān)鍵詞: 3D打印;β-磷酸三鈣;VAN/PLGA緩釋微球;復(fù)合支架;表征評(píng)價(jià) 
分類號(hào):R318.08&nbsp;
出版年·卷·期(頁(yè)碼):2022·41·5(471-476)
摘要:

目的 通過(guò)對(duì)多孔β-磷酸三鈣(tricalcium phosphate,TCP)負(fù)載萬(wàn)古霉素/聚乳酸-羥基乙酸(vancomycin/poly lactic co glycolic acid, VAN/PLGA)緩釋微球復(fù)合支架進(jìn)行表征評(píng)價(jià),初步判斷其能否能作為修復(fù)骨缺損的材料。方法 利用CAD軟件繪制多孔β-TCP支架,由3D打印機(jī)打印制作,再經(jīng)馬弗爐干燥制成β-TCP骨組織支架。采用W/O/W法制備VAN/PLGA緩釋微球,將β-TCP骨支架與VAN/PLGA微球懸液震蕩混勻,使微球吸附到支架的微孔內(nèi),離心凍干后即得β-TCP負(fù)載VAN/PLGA緩釋微球復(fù)合支架。從支架外觀形態(tài)、孔隙率、藥物緩釋率、力學(xué)性能和體外降解實(shí)驗(yàn)等多方面進(jìn)行表征評(píng)價(jià)。結(jié)果β-TCP負(fù)載VAN/PLGA緩釋微球復(fù)合支架呈白色立方體狀,表面附著有一層大小均勻的圓形顆粒,在光鏡下能清楚地看到內(nèi)部結(jié)構(gòu);通過(guò)液體置換法測(cè)量得β-TCP負(fù)載VAN/PLGA復(fù)合支架的平均孔隙率為(59.21±1.55)%,小于3D打印β-TCP空白支架的65.27±2.37(t=2.552,P=0.032);根據(jù)VAN 標(biāo)準(zhǔn)曲線測(cè)得VAN/PLGA微球?qū)AN的藥物負(fù)載率為(17.42±1.85)%,包封率為(35.13±3.59)%;體外藥物釋放實(shí)驗(yàn)表明,β-TCP負(fù)載VAN/PLGA復(fù)合支架在24 d時(shí)釋放率可達(dá)50%,還可以進(jìn)一步釋放,在體內(nèi)能保持長(zhǎng)時(shí)間的抑菌抗感染效果;力學(xué)性能結(jié)果顯示,復(fù)合支架最大負(fù)荷為(174.50±7.80)N,最大強(qiáng)度為(4.83±0.25)MPa;體外降解實(shí)驗(yàn)說(shuō)明,與β-TCP空白支架相比,負(fù)載VAN/PLGA的復(fù)合β-TCP支架在體內(nèi)降解時(shí)間更長(zhǎng),在20 W時(shí)才能降解完全,對(duì)骨缺損能起到長(zhǎng)久的修復(fù)作用。結(jié)論3D打印多孔β-TCP負(fù)載VAN/PLGA緩釋微球復(fù)合支架具有良好的緩釋性能、力學(xué)性能和抗感染修復(fù)功能,可作為修復(fù)骨缺損的優(yōu)良材料。

Objective Through the characterization evaluation of porous β-(tricalcium phosphate)TCP loaded vancomycin/poly lactic co glycolic acid (VAN/PLGA) sustained-release microspheres composite scaffold designed and manufactured, it is preliminatively determined whether it can be used as a material for repairing bone defects. Methods The porous β-TCP scaffold was drawn by CAD software, printed by 3D printer, and then dried in muff furnace to form β-TCP bone tissue scaffold. VAN/PLGA sustained-release microspheres were prepared by W/O/W method. The β-TCP bone scaffold and VAN/PLGA microspheres suspension were mixed by shaking, and the microspheres were adsorbed into the micropores of the scaffold. After centrifugation and lyophilization, the β-TCP loaded VAN/PLGA sustained-release microspheres composite scaffold was obtained. The scaffolds were characterized by morphology, porosity, sustained drug release rate, mechanical properties and in vitro degradation experiments. Results β-TCP loaded VAN/PLGA sustained-release microspheres composite scaffold was white cube shape, with a layer of uniform size of circular particles attached to the surface, and the internal structure could be clearly seen under the light microscope. The average porosity of β-TCP loaded VAN/PLGA composite scaffold measured by liquid replacement method was (59.21±1.55)%, which was smaller than 65.27±2.37 (t=2.552, P=0.032) of β-TCP blank scaffold. According to VAN standard curve, VAN loading rate and encapsulation rate of VAN/PLGA microspheres were (17.42±1.85) % and (35.13±3.59) % respectively. In vitro drug release experiments showed that the release rate of β-TCP loaded VAN/ PLGA composite scaffold could reach 50% after 24 days, and it could be further released, which could maintain the antibacterial and anti infective effect for a long time. The mechanical performance results show that the maximum load of the composite bracket was (174.50±7.80)N, and the maximum strength was (4.83±0.25)MPa. In vitro degradation experiment showed that compared with β-TCP blank scaffold, the degradation time of compound β-TCP scaffold loaded with VAN/PLGA was longer in vivo, and the degradation was complete at 20W, which could play a long-term role in the repair of bone defects. Conclusions The 3D printed porous β-TCP loaded VAN/PLGA sustained-release microsphere composite scaffold has good sustained-release performance, mechanical properties and anti-infective repair function, which can be used as an excellent material to repair bone defects.

參考文獻(xiàn):

[1] Liu J,Wang W,Wang X,et al.PL/vancomycin/nano-hydroxyapatite sustained-release ? ? ?material to treat infectious bone defect[J]. Open Life Sciences, 2020, 15(1):92-107.
[2]占華松,陳躍平,章曉云. 骨組織工程技術(shù)治療感染性骨缺損:優(yōu)勢(shì)與問(wèn)題[J]. 中國(guó)組織工程研究,2019, 23(30): 4848-4854.
Zhan HS,Chen YP,Zhang XY. Bone tissue engineering for the treatment of infectious bone defects: Advantages and problems [J]. Bone Tissue Engineering,2019, 23(30): 4848-4854.
[3]Wang T, Lu X, Wang A. A review: 3D printing of microwave absorption ceramics[J]. International Journal of Applied Ceramic Technology, 2020, 17(6):2477-2491.?
[4]Shymon V,Meklesh Y,Alfeldii S,et al.Useβ-tricalciumphosphate in the composition of granules in treatment of long-bone fractures[J]. ScienceRise Medical Science, 2020, 1 (34):63-67.
[5]Daskalova A,Lasgorceix M,Bliznakova I,et al. Ultra-fast laser surface texturing of β-tricalcium phosphate (β-TCP) ceramics for bone-tissue engineering applications[J]. Journal of Physics: Conference Series,2020, 7(23):1-5.
[6] Elzaan B, Martin B, Preez VSAD, et al. Antibacterial Activity of Vancomycin Encapsulated in Poly(DL-lactide-co-glycolide) Nanoparticles Using Electrospraying[J]. Probiotics Antimicrobial Proteins, 2018,10(6):1-7.
[7]鄒琪,劉成,余美玲,等.萬(wàn)古霉素不同輸注時(shí)長(zhǎng)對(duì)重癥感染患者血藥濃度,療效及預(yù)后影響的研究[J].中國(guó)實(shí)用內(nèi)科雜志,2020,40(2):58-63.
Zou Q, Liu C, Yu ML, et al. Effects of vancomycin infusion duration on plasma concentration, efficacy and prognosis of patients with severe infection [J]. Chinese Journal of Practical Internal Medicine,2020,40(2):58-63.
[8] Yang Z, Liu L, Su L, et al. Design of a zero-order sustained release PLGA microspheres for palonosetron hydrochloride with high encapsulation efficiency[J]. International Journal of Pharmaceutics,2019,42(24):1-12 .
[9]Magri AMP, Fernandes KR, Lívia Assis, et al. Incorporation of collagen and PLGA in bioactive glass: in vivo biological evaluation[J]. International Journal of Biological Macromolecules, 2019, 41(5):869-881.
[10]張佳毅,劉華鋼. PLGA緩釋微球的制備及其緩釋性能的研究進(jìn)展[J].臨床合理用藥雜志, 2019, 12(1):174-175.
Zhang JY, Liu HG.Research progress in preparation and sustained-release properties of PLGA microspheres [J].Journal of Clinical Rational Drug Use, 2019, 12(1):174-175.
[11]Placone JK, Engler AJ. Recent Advances in Extrusion-Based 3D Printing for Biomedical Applications[J]. Advanced Healthcare Materials,2018,7(8): 1-11.
[12] A AK,B SP,C VK,et al. Synergetic effect of vancomycin loaded silver nanoparticles for enhanced antibacterial activity[J]. Colloids Surf B Biointerfaces,2019,176:62-69.
[13] Donate R,Mario Monzón,Ortega Z,et al.Comparison between calcium carbonate and β‐tricalcium phosphate as additives of 3D printed scaffolds with polylactic acid matrix[J]. Journal of Tissue Engineering and Regenerative Medicine,2020,14(2):272-283.
[14] Zeng W, Hui H, Liu Z, et al. TPP ionically cross-linked chitosan/PLGA microspheres for the delivery of NGF for peripheral nerve system repair[J]. Carbohydrate Polymers,2021,41(7):1-8.
[15]Raboh ASA,El-Khooly MS,Hassaan MY.Bioactivity and drug release study of dexamethasone loaded bioglass/chitosan composites for biomedical applications[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31(14):1-12.
[16]Wang C,Huang W,Zhou Y,et al. 3D printing of bone tissue engineering scaffolds[J]. Bioactive Materials,2020,5(1):82-91.
[17] Yuxiao Lai, Ye Li, Huijuan Cao, et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect[J].Biomaterials,2019,197:207-219.
[18]韓倩倩,王苗苗,史建峰,等.利用生物三維打印技術(shù)修復(fù)軟骨損傷的研究進(jìn)展[J].組織工程與重建外科雜志, 2019, 15(5): 359-361.
Han QQ, Wang MM, Shi JF, et al. Research progress of biological 3d printing technology for repairing cartilage damage [J]. Journal of Tissue Engineering and Reconstructive Surgery, 2019, 15(5): 359-361.
[19] Samaszko-Fiertek J,Szulc M,Dmochowska B,et al. Influence of Carbohydrate Residues on Antibacterial Activity of Vancomycin[J]. Letters in Organic Chemistry,2020,17(4):287-293.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]