Objective In view of the problems of low temperature control precision and large volume of mild hypothermia therapeutic instrument in the domestic market, combined with the characteristics of mild hypothermia treatment for neonates with hypoxic ischemic encephalopathy, a temperature control system of mild hypothermia therapeutic instrument for neonates with accurate temperature control and good portability was proposed. Methods The temperature control system uses semiconductor refrigeration sheets as the heat source to cool the whole body of the child. The water temperature feedback model and the warm body temperature feedback model are established, and the step response method is used to identify the models. Based on the model, the water temperature control system and the body temperature feedback control system are constructed using active disturbance rejection control and non-linear PI algorithm, and the particle swarm algorithm is used to adjust the controller parameters. Finally, the warm body dummy system is used to simulate infants for sub-hypothermia treatment experiments. Results The volume and weight of the neonatal mild hypothermia treatment instrument using semiconductor refrigeration scheme are 28 L and 7 kg respectively. The water temperature control system has the advantages of fast adjustment speed, no obvious overshoot and steady-state error, and the temperature control accuracy is within ±0.1℃. The body temperature feedback control system is accurate in temperature control, and it takes a short time to return to a steady state after being disturbed. So the function of neonatal mild hypothermia treatment can be achieved well. Conclusions The temperature control system of the neonatal mild hypothermia treatment instrument proposed in this paper has good portability and temperature control effect, and has application value.
|
[1] ?張銘珠,臧月珍,朱玲玲. 新生兒缺氧缺血性腦病治療的相關(guān)進(jìn)展[J]. 實(shí)用臨床醫(yī)藥雜志, 2021,25(2):106-111. Zhang MZ, Zang YZ, Zhu LL. Progress in treatment of neonatal hypoxic-ischemic encephalopathy[J]. Journal of Clinical Medicine in Practice, 2021,25(2):106-111. [2] 吳冬雪,馬建榮. 亞低溫治療新生兒缺氧缺血性腦病研究進(jìn)展[J]. 中國(guó)實(shí)用兒科雜志, 2018,33(6):463-467. [3] Wakamatsu H, Utsuki T, Mitaka C, et al. Clinical system engineering of long-term automatic thermal control during brain hypothermia under changing conditions[J]. Technology and Health Care, 2010,18(3):181-201. [4] Ahiska R, Yavuz AH, Kaymaz M, et al. Control of a thermoelectric brain cooler by adaptive neuro-fuzzy inference system[J]. Instrumentation Science and Technology, 2009, 36(6):636-655. [5] 陳芳琦. 體表溫度反饋式亞低溫治療系統(tǒng)的研制[D].深圳: 深圳大學(xué), 2017. Chen FQ. Development of mild hypothermia treatment system of feedback by body surface temperature[D].Shenzhen:Shenzhen University, 2017. [6] Iberall AS , Schindler AM . On the physical basis of a theory of human thermoregulation[J]. Journal of Dynamic Systems Measurement and Control, 1973, 95(1):68-75. [7] 胡晚屏. 半導(dǎo)體制冷器溫控系統(tǒng)的設(shè)計(jì)[D].武漢:武漢科技大學(xué), 2019. Hu WP. Design of TEC temperature control system[D]. Hubei: Wuhan University of Science and Technology, 2019. [8] 朱遠(yuǎn)帆,楊海仕,吳文陽(yáng),等. 基于前饋解耦的嬰兒培養(yǎng)箱溫濕度控制系統(tǒng)[J].北京生物醫(yī)學(xué)工程, 2019,38(3):246-250. Zhu YF, Yang HS, Wu WY, et al. Temperature and humidity control system of infant incubator based on feedforward decoupling[J]. Beijing Biomedical Engineering, 2019, 38(3): 246-250. [9] 韓京清. 自抗擾控制技術(shù)[J]. 前沿科學(xué), 2007 (1):24-31. Han JQ. Auto Disturbances Rejection Control Technique[J]. Frontier Science, 2007 (1): 24-31. [10] 高志強(qiáng). 自抗擾控制思想探究[J]. 控制理論與應(yīng)用, 2013, 30(12):1498-1510. Gao ZQ. On the foundation of active disturbance rejection control[J]. Control Theory & Applications, 2013, 30(12):1498-1510. [11] Gao ZQ. Scaling and bandwidth-parameterization based controller tuning[C] Proceedings of the American control conference. 2006,6:4989-4996. [12] 孫偉,周陽(yáng)花,奚茂龍. 非線性PID控制器參數(shù)優(yōu)化方法[J]. 計(jì)算機(jī)工程與應(yīng)用, 2010,46(28):244-248. Sun W, Zhou YH, Xi ML. Method of parameter optimization of nonlinear PID controller[J]. Computer Engineering and Applications, 2010,46(28):244-248. [13] Kennedy J, Eberhart R. Particle swarm optimization[C]// Proceedings of ICNN'95-international conference on neural networks. Perth, WA, Australia:IEEE, 1995, 4: 1942-1948. [14] 楊智, 陳志堂, 范正平,等. 基于改進(jìn)粒子群優(yōu)化算法的PID控制器整定[J]. 控制理論與應(yīng)用, 2010, 27(10):1345-1352. Yang Z, Cheng ZT, Fang ZL,et al. Tuning of PID controller based on improved particle-swarm-optimization[J]. Control Theory & Applications, 2010, 27(10):1345-1352.
|