51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于肩部肌肉表面肌電的下肢外骨骼控制系統(tǒng)

Lower limb exoskeleton control system based on shoulder muscle surface electromyography

作者: 朱鵬霖  蘇宗信  唐家曦  武彥言  于詩靜  唐鶴云 
單位:徐州醫(yī)科大學(xué)醫(yī)學(xué)影像學(xué)院(江蘇徐州 221004)&nbsp;<br />作者簡介:唐鶴云,副教授。E-mail:[email protected]
關(guān)鍵詞: 表面肌電;外骨骼;運(yùn)動(dòng)意圖識(shí)別;康復(fù)機(jī)器人;三點(diǎn)步 
分類號(hào):R318.04&nbsp;
出版年·卷·期(頁碼):2021·40·5(510-515)
摘要:

目的 設(shè)計(jì)一種基于肩關(guān)節(jié)屈曲、外展運(yùn)動(dòng)主要肌肉表面肌電信號(hào)的下肢可穿戴外骨骼控制系統(tǒng),解決基于下肢肌肉表面肌電信號(hào)控制系統(tǒng)信號(hào)提取識(shí)別困難的問題。方法首先采用表面肌電信號(hào)傳感器采集患者的三角肌前束、中束以及斜方肌肌電信號(hào)。其次通過藍(lán)牙等無線通信技術(shù)將信號(hào)實(shí)時(shí)傳輸至控制板。再次,控制板通過分析采集信號(hào)數(shù)據(jù)特征判斷患者運(yùn)動(dòng)狀態(tài)和運(yùn)動(dòng)意圖,控制大腿相關(guān)關(guān)節(jié)處舵機(jī)根據(jù)三維步態(tài)采集系統(tǒng)得到患者特殊步態(tài)數(shù)據(jù)提供相關(guān)扭矩完成運(yùn)動(dòng)。最后,受試者穿戴配有控制系統(tǒng)的外骨骼康復(fù)機(jī)器人后進(jìn)行3組獨(dú)立重復(fù)實(shí)驗(yàn),驗(yàn)證機(jī)器人控制系統(tǒng)實(shí)時(shí)提取識(shí)別肌電信號(hào)、控制舵機(jī)運(yùn)作的效果。結(jié)果 肩關(guān)節(jié)表面肌肉位置淺表、肌腹面積大且拮抗肌信號(hào)干擾小,表面肌電采集容易,控制板對(duì)運(yùn)動(dòng)意圖的識(shí)別難度低,平均識(shí)別成功率有89.6%,驗(yàn)證了下肢外骨骼康復(fù)機(jī)器人控制系統(tǒng)有效控制舵機(jī)輔助人體完成康復(fù)訓(xùn)練的可行性。結(jié)論 基于肩部肌肉表面肌電信號(hào)的下肢外骨骼控制系統(tǒng)降低了信號(hào)提取識(shí)別難度,下肢外骨骼助行機(jī)器人通過提取并識(shí)別肩部表面肌電信號(hào)進(jìn)行運(yùn)動(dòng)具有可行性。

Objective To design a lower extremity wearable exoskeleton control system based on the surface EMG signals of main muscles of shoulder flexion and abduction.,and to solve the problem of difficult signal extraction and recognition based on lower limb muscle surface EMG signal control system. Methods Firstly, the electrical signals of anterior, middle and trapezius deltoid were collected by surface EMG sensor. Secondly, the signal was transmitted to the control board in real time through Bluetooth and other wireless communication technologies. Thirdly, the control board judged the patient's motion state and motion intention by analyzing the characteristics of the collected signal data, controlled the steering gear at the relevant joints of the thigh, obtained the patient's special gait data according to the three-dimensional gait acquisition system, and provided relevant torque to complete the motion. Finally, after wearing the exoskeleton rehabilitation robot equipped with the control system, the subjects carried out three groups of independent repeated experiments to verify the effect of the robot control system on extracting and identifying EMG signals in real time and controlling the operation of the steering gear. Results The muscle position on the surface of shoulder joint was shallow, the area of muscle abdomen was large, and the interference of antagonistic muscle signal was small. The surface EMG acquisition was easy, and the control board had low difficulty in identifying movement intention. The average recognition success rate was 89.6%. It was verified that the control system of lower limb exoskeleton rehabilitation robot could effectively control the steering gear to assist the human body to complete rehabilitation training. Conclusions The design of lower limb exoskeleton control system based on shoulder muscle surface EMG signal reduces the difficulty of signal extraction and recognition. It is feasible for lower limb exoskeleton walking aid robot to move by extracting and recognizing shoulder surface EMG signal.

參考文獻(xiàn):

[1] 張秀, 張宇斐, 焦志偉. 康復(fù)機(jī)器人研究進(jìn)展[J]. 醫(yī)療衛(wèi)生裝備, 2020, 41(4):97-102.
Zhang X,Zhang YF,Jiao ZW.Research progress of rehabilitation robot[J].Chinese Medical Equipment Journal,2020, 41(4):97-102.
[2] ?第二次全國殘疾人抽樣調(diào)查領(lǐng)導(dǎo)小組,中華人民共和國國家統(tǒng)計(jì)局.2006年第二次全國殘疾人抽樣調(diào)查主要數(shù)據(jù)公報(bào)[J].中國康復(fù)理論與實(shí)踐, 2006, 12(12):1013-1013.
[3] Mehrholz J,Platz T,Kugler J,et al .Electromechanical and robot-assisted arm training for improving arm function and activities ofdaily living after stroke[ J ].Stroke , 2008,40( 4):CD006876.
[4] Chen F,,Yu Y,Ge Y, et al. Basic research on power assist walk ing leg usingforce/velocity control strategies[C]. IEEE International Conference onInformat ion Acqu is ition. Seogwipo-si, Korea :IEEE,2007.
[5] Esquenazi A,Talaty M,Packel A,et al. The Rewalk powered exoskeleton torestore ambu latory function to individuals with thoracic-level motor-completesp in al cord injury [J] . American Journal of Physic al Medicine &Rehabilitation,2012,91 (11): 911-921.
[6] 許祥, 侯麗雅, 黃新燕, 等. 基于外骨骼的可穿戴式上肢康復(fù)機(jī)器人設(shè)計(jì)與研究[J]. 機(jī)器人, 2014, 36(2):147-155.
Xu X, Hou LY, Huang XY, et al. Design and Research of a Wearable Robot for Upper Limbs Rehabilitation Based on Exoskeleton [J]. Robot, 2014, 36 (2): 147-155.
[7] 明東, 蔣晟龍, 王忠鵬,等. 基于人機(jī)信息交互的助行外骨骼機(jī)器人技術(shù)進(jìn)展[J]. 自動(dòng)化學(xué)報(bào), 2017, 43(7):1089-1100.
Ming D, Jiang SL, Wang ZP, et al. Review of walk assistant exoskeleton technology:human—machine interaction [J]. Acta Automatica Sinica, 2017, 43 (7): 1089-1100
[8] 鄺亞云, 王黎明, 王佳琪. 基于快速獨(dú)立分量分析的腦電信號(hào)去噪方法研究[J]. 國外電子測量技術(shù), 2018, 37(11):1-4.
Kuang YY, Wang LM, Wang JQ. Research on denoising method of EEG signal based on fast independent component analysis [J]. Foreign electronic measurement technology, 2018, 37 (11): 1-4.
[9] 王洪斌, 李程, 王躍靈,等. 基于Arduino和藍(lán)牙技術(shù)的六足機(jī)器人控制系統(tǒng)設(shè)計(jì)[J]. 黑龍江大學(xué)自然科學(xué)學(xué)報(bào), 2015,32(4):117-121.
Wang HB, Li C, Wang YL, et al. Design of hexapod robot control system based on Arduino and Bluetooth module [J]. Journal of Natural Science of Heilongjiang University, 2015,32(4): 117-121.
[10] 雷杰宇. 人體運(yùn)動(dòng)數(shù)據(jù)采集與分析[D].杭州:浙江大學(xué),2015.
Lei JY. Data acquisition and analysis of human motion [D]. Hangzhou:Zhejiang University, 2015.
[11] 吳文竹, 唐俊銓. 基于步態(tài)檢測算法的避障裝置研制[J]. 醫(yī)療衛(wèi)生裝備, 2017,38(2):1-5.
Wu WZ, Tang JQ. Development of obstacle avoidance device based on gait detection algorithm [J]. Chinese Medical Equipment Journal, 2017, 38 (2): 1-5
[12] 楊紅. 基于單片機(jī)的電機(jī)控制系統(tǒng)研究[J]. 煤炭技術(shù), 2012,31(9):48-49.
Yang H. Study of Motor Control System Based on Microcontroller [J]. Coal technology, 2012, 31 (9): 48-49.
[13] 呂楠, 尚清, 馬彩云,等.康復(fù)機(jī)器人對(duì)痙攣型腦性癱瘓患兒的康復(fù)效果[J]. 中國實(shí)用神經(jīng)疾病雜志, 2017, 20(7):49-51.
[14] 王啟寧, 鄭恩昊, 陳保君,等. 面向人機(jī)融合的智能動(dòng)力下肢假肢研究現(xiàn)狀與挑戰(zhàn)[J]. 自動(dòng)化學(xué)報(bào), 2016,42(12):1780-1793.
Wang QN, Zheng EH, Chen BJ, et al. Recent Progress and Challenges of Robotic Lower-limb Prostheses for Human-robot Integration ?[J]. Acta Automatica Sinica, 2016,42(12): 1780-1793.
[15] Huang H, ?Zhang F, ?Hargrove L, et al. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular–mechanical fusion[J]. IEEE Transactions on Bio-medical Engineering, 2011, 58(10):2867-2875.
[16] Miller JD , ?Beazer MS , ?Hahn ME . Myoelectric walking mode classification for transtibial amputees[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(10):2745-2750.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]