51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于三維卷積神經(jīng)網(wǎng)絡(luò)的頸部 TOF MRA 圖像的血管自動分割

Automatic vessel segmentation of neck TOF MRA image based on 3D convolutional neural network

作者: 邱偉  陳碩  魏寒宇  李睿 
單位:清華大學(xué)醫(yī)學(xué)院生物醫(yī)學(xué)工程系生物醫(yī)學(xué)影像研究中心(北京 100084)。 <p>通信作者:李睿,博士,研究員。E-mail:[email protected]</p>
關(guān)鍵詞: 動脈粥樣硬化;卷積神經(jīng)網(wǎng)絡(luò);時間飛躍法磁共振血管造影圖像;三維切塊;血管分割 
分類號:R318.04
出版年·卷·期(頁碼):2022·41·6(551-557)
摘要:

目的 提出一種基于三維卷積神經(jīng)網(wǎng)絡(luò)(convolutional neural network, CNN)的分割模型,通過設(shè)計網(wǎng)絡(luò)結(jié)構(gòu)和調(diào)整參數(shù),實(shí)現(xiàn)對頸部時間飛躍法磁共振血管造影(time of flight magnetic resonance angiography, TOF MRA)圖像的自動精準(zhǔn)血管分割。方法 三維頸部TOF MRA圖像數(shù)據(jù)來源于一項(xiàng)無癥狀老年人心腦血管病發(fā)病風(fēng)險研究中的166例受試者。首先由血管影像臨床經(jīng)驗(yàn)的放射診斷醫(yī)生運(yùn)用Mimics軟件對頸部動脈血管進(jìn)行手動標(biāo)注,再按照8:1:1的比例將數(shù)據(jù)隨機(jī)分為訓(xùn)練集(132例)、驗(yàn)證集(17例)和測試集(17例)。針對TOF MRA圖像稀疏性和高對比度的特點(diǎn),采用3D CNN的優(yōu)化模型,通過在U-Net網(wǎng)絡(luò)的編碼和解碼路徑中多層級的加入專門的模塊和不同分辨率的原始圖像,更好地學(xué)習(xí)和利用到圖像的獨(dú)有特征。為研究輸入圖像的大小對網(wǎng)絡(luò)性能的影響,從原始圖像中分別裁剪出3種不同尺寸大小的三維切塊來進(jìn)行模型訓(xùn)練。在十折交叉驗(yàn)證下,采用Dice系數(shù)的平均值和標(biāo)準(zhǔn)差,以及靈敏度和特異度對模型的分割性能進(jìn)行評價。采用單因素方差分析對比3種切塊尺寸下的測試實(shí)驗(yàn)。結(jié)果 所提出的新模型取得了最高的分割Dice值(0.932 0)、靈敏度(0.918 6)和特異度(0.999 6),以及最小的Dice值標(biāo)準(zhǔn)差(0.005 1)。ANOVA顯著性水平為,表明了不同切塊尺寸下的模型分割結(jié)果有顯著性差異,尺寸增大,模型分割結(jié)果更好。結(jié)論 所提出的基于3D CNN的優(yōu)化模型在TOF MRA圖像血管自動精準(zhǔn)分割上優(yōu)于已有方法。此外,增加模型輸入圖像的尺寸大小有助于提高分割性能。

Objective Propose an automatic segmentation model based on 3D convolutional neural network to segment neck vessel from the time-of-flight magnetic resonance angiography(TOF MRA) data. Methods A total of 166 neck TOF MRA images were selected from the Cardiovascular Risk of Old Population(CROP) study. Vessel segmentation labels were manually delineated by vascular imaging professionals in 3D TOF images (Materialise Mimics, Mimics Medical 17.0), and were subsequently examined by experienced imaging experts. Randomly, 132 images were assigned into training dataset, 17 images were assigned into validating dataset, 17 images were assigned into test dataset according to a ratio of 8∶1∶1. Based on the sparsity and high contrast of TOF MRA image, a 3D CNN model suitable for TOF MRA data were proposed by adding special modules and images to the encoding and decoding path of U-Net network. The unique features of the image can be better learned and utilized. In addition, in order to study the influence of the size of the input on the network performance, three different sizes of 3D patch randomly cropped from the original image were selected for model training and predicting. The average Dice coefficients, sensitivity, specificity and standard deviation of the Dice coefficients under 10-fold cross-validation were used to evaluate the segmentation performance of the model. In this comparative experiments, One-way ANOVA was carried out for the experiments of the three kinds of patch size. Results Proposed 3D CNN model obtained the highest segmentation Dice coefficient value(0.932 0), sensitivity(0.918 6) and specificity(0.999 6), and the smallest standard deviation (0.005 1). In the results of One-way ANOVA, the p<0.01, indicated that the results of different patch sizes had significant differences. And as the size increased, the segmentation result of the model was better. Conclusions The experimental results showed that the proposed model can automatically segment the neck vascular from TOF-MRA volumes and outperformed the state of the art. Besides, increasing the size of the input image can improve the segmentation performance.

參考文獻(xiàn):

[1] Wu S, Wu B, Liu M, et al. Stroke in China: advances and challenges in epidemiology, prevention, and management[J]. The Lancet Neurology, 2019,18(4): 394-405.
[2] Pega F, Náfrádi B, Momen NC, et al. Global, regional, and national burdens of ischemic heart disease and stroke attributable to exposure to long working hours for 194 countries, 2000-2016: a systematic analysis from the WHO/ILO Joint Estimates of the Work-related Burden of Disease and Injury[J]. Environment International, 2021,154: 106595.
[3] Bos D, Arshi B, van den Bouwhuijsen Q, et al. Atherosclerotic Carotid Plaque Composition and Incident Stroke and Coronary Events[J]. Journal of the American College of Cardiology, 2021, 77(11):1426-1435.
[4] 王擁軍,李子孝,谷鴻秋,等.中國卒中報告2019(中文版)(1)[J].中國卒中雜志,2020,15(10):1037-1043.
[5] Sun Y, Shi YM, Xu P. The clinical research progress of vertebral artery dominance and posterior circulation ischemic stroke[J]. Cerebrovascular Diseases (Basel, Switzerland), 2022, 51(5): 553-556.?
[6] Debrey SM, Yu H, Lynch JK, et al. Diagnostic accuracy of magnetic resonance angiography for internal carotid artery disease: a systematic review and meta-analysis[J]. Stroke, 2008, 39(8):2237-2248.?
[7] Munio M, Darcourt J, Gollion C, et al. Large artery intracranial stenosis in young adults with ischaemic stroke[J]. Revue Neurologique, 2021,178(3):206-212.?
[8] Villablanca JP, Nael K, Habibi R, et al. 3 T contrast-enhanced magnetic resonance angiography for evaluation of the intracranial arteries: comparison with time-of-flight magnetic resonance angiography and multislice computed tomography angiography[J]. Investigative Radiology, 2006,41(11): 799-805.
[9] Josephson CB, White PM, Krishan A, et al. Computed tomography angiography or magnetic resonance angiography for detection of intracranial vascular malformations in patients with intracerebral haemorrhage[J]. The Cochrane Database of Systematic Reviews, 2014(9): CD009372.
[10] Wang X, Benson J, Jagadeesan B, et al. Giant cerebral aneurysms: comparing CTA, MRA, and digital subtraction angiography assessments[J]. Journal of Neuroimaging, 2020,30(3): 335-341.?
[11] 張琨.核磁共振血管成像與螺旋CT血管成像技術(shù)診斷腦血管疾病的價值分析[J].中國醫(yī)療器械信息,2020,26(13): 65-66.
Zhang K. Analysis of the value of nuclear magnetic resonance angiography and spiral CT angiography in the diagnosis of cerebrovascular diseases[J]. China Medical Device Information,2020,26(13):65-66.
[12] 李繼凡,陳碩,章強(qiáng),等. 基于U?Net神經(jīng)網(wǎng)絡(luò)的多模態(tài)MR頸動脈血管成像的分割方法研究[J].中華放射學(xué)雜志, 2019,53(12):1091-1095.
Li JF, Chen S, Zhang Q, et al. The study on the segmentation of carotid vessel wall in multicontrast MR images based on U?Net neural network[J]. Chinese Journal of Radiology,2019,53(12):1091-1095.
[13] Settecase F, Rayz VL. Advanced vascular imaging techniques[J]. Handbook of Clinical Neurology, 2021,176: 81-105.?
[14] Osmanodja F, Scheitz JF, Fiebach JB, et al. Can intracranial time-of-flight-MR angiography predict extracranial carotid artery stenosis?[J]. Journal of Neurology, 2021,269:2743-2749.?
[15] Wilson DL, Noble JA. Segmentation of cerebral vessels and aneurysms from MR angiography data[C]// International Conference on Information Processing in Medical Imaging. Berlin: Springer, Berlin, Heidelberg, 1997: 423-428.
[16] Xiao R, Ding H, Zhai F, et al. Cerebrovascular segmentation of TOF-MRA based on seed point detection and multiple-feature fusion[J]. Computerized Medical Imaging and Graphics, 2018, 69:1-8.?
[17] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, Cham, 2015: 234-241.?
[18] Cicek ?, Ahmed Abdulkadir, Lienkamp SS, et al. 3D u-net: learning dense volumetric segmentation from sparse annotation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, Cham, 2016: 424–432.?
[19] Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis[J]. Medical Image Analysis, 2017,42: 60?88.?
[20] Norman B, Pedoia V, Majumdar S. Use of 2D U?Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry[J]. Radiology, 2018, 288(1): 177?185.
[21] Seo H, Badiei Khuzani M, Vasudevan V, et al. Machine learning techniques for biomedical image segmentation: An overview of technical aspects and introduction to state-of-art applications[J]. Medical Physics, 2020,47(5): e148-e167.?
[22] Phellan R, Peixinho A, Falc?o A, et al. Vascular segmentation in TOF MRA images of the brain using a deep convolutional neural network[C]// Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. Berlin: Springer, Cham: 2017: 39-46.?
[23] Livne M, Rieger J, Aydin OU, et al. A U-net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease[J]. Frontiers in Neuroscience, 2019, 13: 97.?
[24] Sanches P, Meyer C, Vigon V, et al. Cerebrovascular network segmentation of MRA images with deep learning[C]// 2019 IEEE 16th International Symposium on Biomedical Imaging(ISBI 2019). Venice, Italy: IEEE Press, 2019: 768-771.
[25] Zhu C, Wang X, Teng Z, et al. Cascaded residual U-net for fully automatic segmentation of 3D carotid artery in high-resolution multi-contrast MR images[J]. Physics in Medicine and Biology, 2021,66(4): 045033.
[26] Han Y, Guan M, Zhu Z, et al. Assessment of longitudinal distribution of subclinical atherosclerosis in femoral arteries by three-dimensional cardiovascular magnetic resonance vessel wall imaging[J]. Journal of Cardiovascular Magnetic Resonance, 2018, 20: 60.?
[27] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, NV, USA: IEEE Press, 2016: 770-778.
[28] Hu J, Shen L, Sun G, et al. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE Press, 2018: 7132-7141.?

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]