51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于靜息態(tài)fMRI信號(hào)復(fù)雜度的MCI識(shí)別研究

MCI recognition based on the complexity of resting state fMRI signal

作者: 董建鑫  王川 
單位:首都醫(yī)科大學(xué)燕京醫(yī)學(xué)院(北京 101300)&nbsp;<br />通信作者:董建鑫。E-mail: [email protected]&nbsp;
關(guān)鍵詞: 輕度認(rèn)知障礙;靜息態(tài)功能磁共振成像;Hurst指數(shù);獨(dú)立成份分析;支持向量機(jī) 
分類號(hào):R318.04
出版年·卷·期(頁(yè)碼):2022·41·6(564-568)
摘要:

目的    基于靜息態(tài)功能磁共振圖像,提取默認(rèn)網(wǎng)絡(luò)特征腦區(qū)的信號(hào)復(fù)雜度參數(shù)建立輕度認(rèn)知障礙(mild cognitive impairment, MCI)的分類模型。方法 研究數(shù)據(jù)來(lái)源于阿爾茨海默癥神經(jīng)成像數(shù)據(jù)庫(kù),包含48名正常對(duì)照人群和53位MCI。首先進(jìn)行獨(dú)立成份分析,針對(duì)分離出的獨(dú)立成份分別計(jì)算對(duì)應(yīng)時(shí)間序列的Hurst指數(shù)。然后在體素水平上采用雙樣本T檢驗(yàn)選擇左側(cè)眶部額下回、左側(cè)額上回和左側(cè)額中回作為特征腦區(qū),計(jì)算其Hurst指數(shù)作為分類特征。最后用支持向量機(jī)對(duì)MCI患者進(jìn)行識(shí)別,并評(píng)價(jià)模型的準(zhǔn)確率、靈敏度、特異度以及接收操作特征(receiver operating characteristics, ROC)曲線下面積。結(jié)果 基于MCI和正常對(duì)照兩組構(gòu)建的分類模型,獲得了最高88.71%的分類準(zhǔn)確率、90.91%的靈敏度和86.21%的特異度。此外,ROC曲線的最大線下面積為0.96。結(jié)論 Hurst指數(shù)可以反映MCI患者異常腦功能活動(dòng),基于獨(dú)立成份分析和支持向量機(jī)的方法能有效地識(shí)別MCI患者,具有一定的臨床輔助診斷意義。

Objective Based on resting-state functional magnetic resonance images, signal complexity parameters of the default network characteristic brain regions were extracted to establish the classification model of mild cognitive impairment (MCI). Methods Data is from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database included 48 normal controls and 53 MCI patients. Firstly, the independent component analysis is carried out, and the Hurst exponent of corresponding time series is calculated for the separated independent components. Then, at the voxel level, two-sample T test was used to select the left orbital part of inferior frontal gyrus, left superior frontal gyrus and left middle frontal grus as characteristic brain regions, and their Hurst exponent was calculated as classification features. Finally, support vector machine was used to identify MCI patients, and the accuracy, sensitivity, specificity and area under receiver operating characteristics (ROC) curve of the model were evaluated. Results The classification model based on MCI and normal control group obtained the highest classification accuracy of 88.71%, sensitivity of 90.91% and specificity of 86.21%. In addition, the maximum area under ROC curve was 0.96. Conclusions Hurst exponent can reflect abnormal brain functional activities of MCI patients. Methods based on independent component analysis and support vector machine can effectively identify MCI patients, which has certain clinical diagnostic significance.

參考文獻(xiàn):

[1] Petersen RC, Smith GE , Waring SC, et al. Mild cognitive impairment: clinical characterization and outcome[J]. Archives of Neurology, 1999, 56(3): 303-308.?
[2] Landau SM, Harvey D, Madison CM, et al. Comparing predictors of conversion and decline in mild cognitive impairment[J]. Neurology, 2010, 75(3): 230-238.
[3] Pozueta A, Rodríguez-Rodríguez E, ?Vazquez-Higuera JL, et al. Detection of early Alzheimer's disease in MCI patients by the combination of MMSE and an episodic memory test[J]. BMC Neurology, 2011, 11: 78.
[4] Mueller SG, Weiner MW, Thal LJ, et al. Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's Disease Neuroimaging Initiative (ADNI)[J]. Alzheimers & Dementia, 2005, 1(1): 55-66.
[5] 文玉, 劉擘, 王效春. 腦靜息態(tài)功能磁共振局部一致性分析在輕度認(rèn)知障礙患者中的初步研究[J]. 磁共振成像, 2020,11(4): 253-258.
Wen Y, Liu B, Wang XC. Preliminary study of brain resting state functional magnetic resonance local consistency analysis in patients with mild cognitive impairment[J]. Chinese Journal of Magnetic Resonance Imaging, 2020,11(4): 253-258.
[6] Li Y, Wang X, Li Y, et al. Abnormal resting-state functional connectivity strength in mild cognitive impairment and its conversion to Alzheimer's disease[J]. Neural Plasticity, 2016, 2016: 4680972.
[7] Liu J, Zhang X, Yu C, et al. Impaired parahippocampus connectivity in mild cognitive impairment and Alzheimer's disease[J]. Journal of Alzheimer's Disease, 2016, 49(4):1051-1064.
[8] Maxim V, ?endur L, Fadili J, et al. Fractional Gaussian noise, functional MRI and Alzheimer's disease[J]. Neuroimage, 2005, 25(1):141-158.
[9] 楊宇軒, 陶玲, 錢志余. 基于Hurst指數(shù)的腦膠質(zhì)瘤分級(jí)方法[J]. 北京生物醫(yī)學(xué)工程, 2019, 38(3): 271-276.
Yang YX, Tao L, Qian ZY. Grading method of gliomas based on Hurst index[J]. Beijing Biomedical Engineering, 2019, 38(3): 271-276.
[10] 鄒燕,王松偉,李霽,等. 腦默認(rèn)模式網(wǎng)絡(luò)顯示臨床慢性疼痛程度變化的研究[J]. 中國(guó)醫(yī)學(xué)計(jì)算機(jī)成像雜志, 2017,23(6): 504-507.
Zou Y, Wang SW, Li J, et al. Study of the effect of variation intensities of chronic pain on the default mode network at resting-state[J]. Chinese Computed Medical Imaging, 2017, 23(6): 504-507.
[11] Porcaro C, Mayhew SD, Marino M, et al. Characterisation of haemodynamic activity in resting state networks by fractal analysis[J]. International Journal of Neural Systems, 2020, 30(12): 2050061.
[12] Veer IM, Beckmann CF, van Tol MJ, et al. Whole brain resting-state analysis reveals decreased functional connectivity in major depression[J]. Frontiers in Systems Neuroscience, 2010, 4: 41.
[13] Zuo XN, Kelly C, Adelstein JS, et al. Reliable intrinsic connectivity networks: test–retest evaluation using ICA and dual regression approach[J]. Neuroimage, 2010, 49: 2163-2177.
[14] Koch W, Teipel S, Mueller S, et al. Diagnostic power of default mode network resting state fMRI in the detection of Alzheimer's disease[J]. Neurobiology of Aging, 2012, 33(3): 466-478.
[15] Greicius MD, Srivastava G, Reiss AL, et al. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI[J]. PNAS, 2004, 101(13): 4637-4642.
[16] Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: a tutorial overview[J]. Neuroimage, 2009, 45(1 Suppl): S199-S209.
[17] Dosenbach NU, Nardos B, Cohen AL, et al. Prediction of individual brain maturity using fMRI[J]. Science, 2010, 329(5997): 1358-1361.
[18] Dai Z, Yan C, Wang Z, et al. Discriminative analysis of early Alzheimer's disease using multi-modal imaging and multi-level characterization with multi-classifier (M3)[J]. Neuroimage, 2012, 59(3): 2187-2195.
[19] Gerardin E, Chételat G, Chupin M. Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging[J]. Neuroimage, 2009, 47(4): 1476-1486.?
[20] Desikan RS, Cabral HJ, Hess CP, et al. Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease[J]. Brain, 2009, 132(Pt 8): 2048-2057.
[21] Zhang D, Wang Y, Zhou L, et al. Multimodal classification of Alzheimer's disease and mild cognitive impairment[J]. Neuroimage, 2011, 55(3): 856-867.
[22] Long Z, Jing B, Ru G, et al. A brainnetome atlas based mild cognitive impairment identification using Hurst exponent[J]. Frontiers in Aging Neuroence, 2018, 10: 103.
[23] Hmlinen A, Tervo S, Grau-Olivares M, et al. Voxel-based morphometry to detect brain atrophy in progressive mild cognitive impairment[J]. Neuroimage, 2007, 37(4): 1122-1131

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]