51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于貝葉斯網(wǎng)絡(luò)的老年綜合評估過程簡化方法

A simplified method for elderly comprehensive geriatric assessment process based on Bayesian network

作者: 李關(guān)東  鄒函怡  王藝樺  許楊  孫怡寧  馬祖長  高理升 
單位:中國科學(xué)院合肥物質(zhì)科學(xué)研究院(合肥 230031)<br />中國科學(xué)技術(shù)大學(xué)(合肥 &nbsp;230026)<br />蚌埠醫(yī)學(xué)院護理學(xué)院(安徽蚌埠233030)<br />通信作者:高理升, 副研究員。E-mail:[email protected]&nbsp;
關(guān)鍵詞: 老年綜合評估;  問卷調(diào)查;  貝葉斯網(wǎng)絡(luò);  概率圖模型;  人工智能 
分類號:R318
出版年·卷·期(頁碼):2022·41·6(589-596)
摘要:

目的 探究基于貝葉斯網(wǎng)絡(luò)的老年綜合評估過程簡化方法在社區(qū)老年綜合評估(comprehensive geriatric assessment, CGA)中的應(yīng)用價值,為普及社區(qū)CGA工作提供一種可行的技術(shù)手段。方法 以2018年中國老年健康影響因素跟蹤調(diào)查(Chinese Longitudinal Healthy Longevity Survey,CLHLS)的橫斷面調(diào)查中的958位老年人為研究對象,根據(jù)CGA內(nèi)容篩選有效樣本。選擇70%數(shù)據(jù)作為訓(xùn)練集構(gòu)建貝葉斯網(wǎng)絡(luò)模型并設(shè)計問卷調(diào)查算法。構(gòu)建FPQM模型與基于貝葉斯網(wǎng)絡(luò)的老年綜合評估過程簡化方法進行比較分析。以平均準(zhǔn)確率、平均簡化率、AFβ、占用空間作為模型的評價指標(biāo)。結(jié)果 基于貝葉斯網(wǎng)絡(luò)的老年綜合評估過程簡化方法在測試集上的平均準(zhǔn)確率、AFβ均最高,分別為0.983 6,0.849 9;占用空間最小,為23 kB。FPQM的平均簡化率較高,為0.973 7;但平均準(zhǔn)確率、AFβ較低,分別為0.842 0,0.787 6;占用空間巨大,達4.13 GB。結(jié)論 基于貝葉斯網(wǎng)絡(luò)的老年綜合評估過程簡化方法在準(zhǔn)確率、綜合性能和空間占用方面均明顯優(yōu)于已報道的簡化算法。在當(dāng)前老齡化日益嚴(yán)峻背景下,該方法對于基層社區(qū)和養(yǎng)老機構(gòu)提升CGA工作效率具有重要應(yīng)用價值。

Objective To explore the application value of the simplified method based on Bayesian network in community comprehensive geriatric assessment(CGA), and provides a feasible technical means for the popularization of community CGA. Methods A total of 958 elderly people from The Chinese Longitudinal Healthy Longevity Survey(CLHLS) 2018 cross-sectional survey were selected as the research subjects, and valid samples were selected according to the CGA content. 70% data were selected as training set to construct bayesian network model and design questionnaire algorithm. The FPQM model is compared with the simplified method based on Bayesian network. Average accuracy, average simplification rate, AFβ and occupied space were used as evaluation indexes of the model. Results The average accuracy and AFβ of the simplified method based on Bayesian network on the test set were 0.983 6 and 0.849 9, respectively. The minimum space is 23 kB. The average simplification rate of FPQM was 0.973 7. But the average accuracy and AFβ were lower, 0.842 0 and 0.787 6, respectively. It takes up a huge 4.13 GB of space. Conclusions The simplified method based on Bayesian network is superior to the reported simplified algorithm in terms of accuracy, comprehensive performance and space occupancy. In the context of increasingly severe aging, this method has important application value for grassroots communities and pension institutions to improve the work efficiency of CGA.

參考文獻:

[1] 中華人民共和國國家統(tǒng)計局.中國統(tǒng)計年鑒 2021[M]. 北京: 中國統(tǒng)計出版社, 2021.
[2] 國務(wù)院辦公廳. 國務(wù)院辦公廳關(guān)于推進養(yǎng)老服務(wù)發(fā)展的意見[EB/OL]. (2022-07-22)[2022-08-02]. http://www.gov.cn/ zhengce/content/2019-04/16/content_5383270.htm.
[3] 陳旭嬌,嚴(yán)靜,王建業(yè),等. 老年綜合評估技術(shù)應(yīng)用中國專家共識[J]. 中華老年醫(yī)學(xué)雜志, 2017, 36(5): 471-477.
Chen XJ, Yan J, Wang JY, et al. Chinese experts consensus on application of comprehensive geriatric assessment[J]. Chinese Journal of Geriatrics, 2017, 36(5): 471-477.
[4] 都永麗,郭青,王英,等. 老年綜合評估工具在社區(qū)護理中的應(yīng)用現(xiàn)狀及研究進展[J]. 中華現(xiàn)代護理雜志, 2020, 26(19): 2661-2664.
Du YL, Guo Q, Wang Y, et al. Application status and research progress of comprehensive geriatric assessment tool in the community nursing[J]. Chinese Journal of Modern Nursing, 2020, 26(19): 2661-2664.
[5] 李苗苗,王青,馬玉霞,等. 基于快速篩查的老年綜合評估指標(biāo)體系構(gòu)建[J]. 護理學(xué)雜志, 2019, 34(24): 80-83.
Li MM, Wang Q, Ma YX, et al. Construction of comprehensive geriatric assessment indicator system based on rapid screening[J]. Journal of Nursing Science, 2019, 34(24): 80-83.
[6] Tai CJ, Yang YH, Huang CY, et al. Development of the brief geriatric assessment for the general practitioner[J]. The Journal of Nutrition, Health & Aging, 2021, 25: 134-140.
[7] Mo T, Zhang R, Li W, et al. An influence-based fast preceding questionnaire model for elderly assessments[J]. Intelligent Data Analysis, 2018, 22(2): 407-437.
[8] Daniel RJ, Longmate J, Vani K, et al. Mining branching rules from past survey data with an illustration using a geriatric assessment survey for older adults with cancer[J]. Algorithms, 2016, 9(2): 33.
[9] 王皓珺,查光玉,曹明國,等. COVID-19疫情期間口腔本科生線上學(xué)習(xí)決策TAN貝葉斯網(wǎng)絡(luò)模型分析[J]. 上海口腔醫(yī)學(xué), 2021, 30(5): 551-555.
Wang HJ, Zha GY, Cao MG, et al. TAN Bayesian network model for online learning decision-making of stomatological undergraduates during COVID-19[J]. Shanghai Journal of Stomatology, 2021, 30(5): 551-555.
[10] 陳雪龍,姜坤. 基于貝葉斯網(wǎng)絡(luò)的并發(fā)型突發(fā)事件鏈建模方法[J]. 中國管理科學(xué), 2021, 29(10): 165-177.
Chen XL, Jiang K. Modeling method of concurrent emergency chain based on Bayesian network[J]. Chinese Journal of Management Science, 2021, 29(10): 165-177.
[11] Aburai T, Okubo A, Suzuki D, et al. Bayesian network analysis for the questionnaire investigation on the needs at Fuji Shopping Street Town [J]. Journal of Management and Strategy, 2018, 9(2): 46-68.
[12] 北京大學(xué)健康老齡與發(fā)展研究中心. 中國老年健康影響因素跟蹤調(diào)查(CLHLS)-追蹤數(shù)據(jù)(1998-2018)[DB/OL].(2020-04-03)[2021-09-20]. https://doi.org/10.18170/DVN/WBO7LK.
[13] 中華人民共和國民政部. 中華人民共和國民政行業(yè)標(biāo)準(zhǔn):老年人能力評估 (MZ/T 039—2013)[S].北京:中國標(biāo)準(zhǔn)出版社,2013.
[14] 呂志剛,李葉,王洪喜,等. 貝葉斯網(wǎng)絡(luò)的結(jié)構(gòu)學(xué)習(xí)綜述[J]. 西安工業(yè)大學(xué)學(xué)報, 2021(1): 1-17.
Lyu ZG, Li Y, Wang HX, et al. Overview of Bayesian network structure learning[J]. Journal of Xi'an Technological University, 2021(1): 1-17.
[15] 宋財文,段霄雨. 貝葉斯網(wǎng)絡(luò)推理與學(xué)習(xí)方法研究[J]. 信息記錄材料, 2019, 20(6): 18-20.
Song CW, Duan XY. Research on reasoning and learning method of Bayesian network[J]. Information Recording Materials, 2019, 20(6): 18-20.
[16] 王君,陳天勇. 職業(yè)壓力源量表的編制及信效度檢驗[J]. 中國健康心理學(xué)雜志, 2022, 30(5): 693-698.
Wang J, Chen TY. Development of occupational stressors scale and assessment on reliability and validity[J]. Chinese Journal of Health Psychology, 2022, 30(5): 693-698.
[17] 師亞,王秀華,劉永兵. 老年長期照護分級綜合評價模型初步構(gòu)建研究[J]. 中國全科醫(yī)學(xué), 2018, 21(34): 4254-4261.
Shi Y, Wang XH, Liu YB. Development of an integrative long-term care services classification model for the elderly[J]. Chinese General Practice, 2018, 21(34): 4254-4261.
[18] Gil-Begue S, Bielza C, Larraaga P. Multi-dimensional Bayesian network classifiers: a survey[J]. Artificial Intelligence Review, 2021, 54: 519-559.
[19] 王利民,劉洋,孫銘會,等. 基于Markov blanket的無約束型K階貝葉斯集成分類模型[J]. 吉林大學(xué)學(xué)報(工學(xué)版), 2018, 48(6): 1851-1858.
Wang LM, Liu Y, Sun MH, et al. Ensemble of unrestricted K-dependence Bayesian classifiers based on Markov blanket [J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(6): 1851-1858.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]