51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
腦腫瘤激光間質(zhì)熱療溫度場仿真技術(shù)研究綜述

Review of temperature field simulation technology of laser interstitial thermal therapy for brain tumor

作者: 畢思欣  南群 
單位:北京工業(yè)大學(xué)環(huán)境與生命學(xué)部(北京 100124)<br />智能化生理測量與臨床轉(zhuǎn)化北京市國際科技合作基地(北京 100124)<br />通信作者:南群,教授。E-mail:[email protected]
關(guān)鍵詞: 腦腫瘤;  激光間質(zhì)熱療;  光傳輸計算;  溫度場仿真 
分類號:R318.04
出版年·卷·期(頁碼):2022·41·6(632-638)
摘要:

激光間質(zhì)熱療技術(shù)是一種臨床治療深部腦腫瘤的手段,而采用有限元仿真技術(shù)可以較為精準(zhǔn)的預(yù)測腫瘤消融區(qū)的溫度變化與組織損傷情況。溫度場仿真的關(guān)鍵技術(shù)包括光傳輸理論的求解、生物傳熱方程的計算和靶區(qū)組織的熱損傷評估。在消融過程中,腫瘤組織動態(tài)光熱參數(shù)、激光光纖波長、光纖直徑及其排布情況對消融效果均有顯著影響,而聯(lián)合納米粒子技術(shù)的LITT仿真模擬將是新的研究方向。本文對腦腫瘤激光間質(zhì)熱療溫度場仿真技術(shù)的研究現(xiàn)狀進(jìn)行綜述,以期為提高臨床療效提供數(shù)據(jù)分析。

Laser interstitial thermal therapy(LITT) is a clinical method for the treatment of deep brain tumors, and finite element simulation technology can more accurately predict the temperature change and tissue damage in the tumor ablation area. The key technologies of temperature field simulation include the solution of light transport theory, calculation of biological heat transfer equation and thermal damage assessment of target tissue. During the ablation process, the dynamic photothermal parameters of tumor tissue, the wavelength of the laser fiber, the diameter of the fiber and its arrangement have a significant impact on the ablation effect, and the LITT simulation combined with nanoparticle technology will be a new research direction. In this paper, the research status of temperature field simulation technology of Laser Interstitial Thermal Therapy for brain tumor is reviewed, in order to provide data analysis for improving clinical efficacy.

參考文獻(xiàn):

[1]Davis FG, Mccarthy BJ. Epidemiology of brain tumors[J]. Current Opinion in Neurology, 2000,13(6): 635-640.
[2]閆井夫,劉靜.腦腫瘤的冷熱治療及其熱學(xué)問題分析[J].北京生物醫(yī)學(xué)工程, 2006, 25(3): 325-329.
Yan JF, Liu J. Cryosurgery and hyperthermia treatment on brain tumors and the thermal issues involved[J].Beijing Biomedical Engineering, 2006, 25(3): 325-329.
[3]Kang TW, Rhim H. Recent advances in tumor ablation for hepatocellular carcinoma[J].Liver Cancer, 2015, 4(3): 176-187.
[4]李志艷.經(jīng)皮熱消融治療疑難部位肝腫瘤引導(dǎo)技術(shù)的臨床應(yīng)用進(jìn)展[J].傳染病信息,2016,29(6): 378-381.
Li ZY. Progress in clinical application of image-guided percutaneous thermal ablation for hepatic tumor in difficult positions[J]. Infectious Disease Information, 2016,29(6): 378-381.
[5]王笑茹,高宏建,吳水才,等.肝腫瘤射頻消融溫度場仿真技術(shù)研究綜述[J].中國醫(yī)療設(shè)備, 2018, 33(6): 108-114.?
Wang XR, Gao HJ, Wu SC, et al. Review of simulation techniques for radiofrequency ablation of liver tumor[J]. Chinese Medical Devices, 2018, 33(6): 108-114.?
[6]Kerbage Y, Rouillès J, Vignion AS, et al. Laser interstitial thermotherapy (LITT) for breast cancer: dosimetry optimization and numerical simulation[J]. Lasers in Medical Science, 2022, 37: 489-498.
[7]Franck P, Henderson PW, Rothaus KO. Basics of lasers: history, physics, and clinical applications[J].Clinics in Plastic Surgery, 2016, 43(3): 505-513.
[8]Menovsky T, Beek JF, van Gemert MJC, et al. Interstitial laser thermotherapy in neurosurgery: a review[J]. Acta Neurochirurgica,1996,138(9): 1019-1026.
[9]Manuchehrabadi N, Zhu L. Development of a computational simulation tool to design a protocol for treating prostate tumours using transurethral laser photothermal therapy[J].International Journal of Hyperthermia, 2014, 30(6): 349-361.
[10]蘇萬鈞,李步洪,謝樹森.測量生物組織光學(xué)特性參數(shù)的單積分球技術(shù)[J].福建師范大學(xué)學(xué)報(自然科學(xué)版),2004,20(1): 38-40,49.
Su WJ, Li BH, Xie SS. Determination of optical properties for biological tissue by single integrating-sphere system[J]. Journal of Fujian Normal University (Natural Science Edition), 2004, 20(1): 38-40,49.
[11]Wilson BC, Adam G. A Monte Carlo model for the absorption and flux distributions of light in tissue[J]. Medical Physics, 1983, 10(6): 824-830.
[12]王光珍.光在多層生物組織中傳輸?shù)挠邢拊ㄑ芯縖D].煙臺:煙臺大學(xué),2009.
Wang GZ. Studies of optical transmission in multi-layer tissue based on finite element method[D].Yantai: Yantai University, 2009.
[13]張祿鵬,孫智,劉筑聞,等.體外動物組織熱變過程中的光學(xué)特性變化[J].北京生物醫(yī)學(xué)工程,2014,33(5): 502-507, 544.
Zhang LP, Sun Z, Liu ZW, et al. In vitro experimental study on changes in the optical properties of animal tissues in the thermal denaturation[J]. Beijing Biomedical Engineering, 2014,33(5): 502-507, 544.
[14]丁樂明,戴麗娟,張磊,等.基于蒙特卡羅法的組織內(nèi)插光纖出射激光的傳輸[J]. 中國激光, 2020,47(2): 412-417.
Ding LM, Dai LJ, Zhang L, et al. Transmission of a laser emitted from an interpolated optical fiber in tissue based on Monte Carlo method[J]. China Journal of Lasers, 2020,47(2): 412-417.
[15]Martelli F, Sassaroli A, Yamada Y, et al. Analytical approximate solutions of the time-domain diffusion equation in layered slabs[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2002, 19(1): 71-80.
[16]張西陽.腫瘤光熱治療的反饋控制技術(shù)[D].福州:福建師范大學(xué), 2018.
Zhang XZ. Feedback-controlled technique of photothermal therapy for tumor[D]. Fuzhou: Fujian Normal University, 2018.
[17]Yaroslavsky AN, Schulze PC, Yaroslavsky IV, et al. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range[J].Physics in Medicine and Biology, 2002,47(12): 2059-2073.
[18] ? ?Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm[J]. Journal of Applied Physiology, 1998, 85(1): 5-34.
[19]徐巖.基于雙曲型方程的二維非傅里葉傳熱數(shù)值模擬[D].長春:長春理工大學(xué),2020.
Xu Y. Numerical simulation of 2-D non-Fourier heat conduction based on hyperbolic equation[D]. Changchun: Changchun University of Science and Technology, 2020.
[19] ? ?Andreozzi A, Brunese L, Iasiello M, et al. A novel local thermal non-equilibrium model for biological tissue applied to multiple-antennas configurations for thermal ablation[J]. Numerical Heat Transfer, Part A: Applications, 2021, 79(2): 111-121.
[21]Yang DS, Converse MC, Mahvi DM, et al. Expanding the bioheat equation to include tissue internal water evaporation during heating[J]. IEEE Transactions on Biomedical Engineering, 2007, 54(8): 1382-1388.
[22]Gupta PK, Singh J, Rai KN, et al. Solution of the heat transfer problem in tissues during hyperthermia by finite difference–decomposition method[J]. Applied Mathematics and Computation, 2013, 219(12): 6882–6892.
[23]Sheu TWH, Solovchuk MA, Chen AWJ, et al. On an acoustics–thermal–fluid coupling model for the prediction of temperature elevation in liver tumor[J]. International Journal of Heat and Mass Transfer, 2011, 54(17-18): 4117–4126.
[24]許光映,薛大文,王晉寶.非傅里葉熱流邊界條件對激光輻照生物組織熱傳導(dǎo)影響的研究[J].中國激光, 2020, 47(12): 298-307.
Xu GY, Xue DW, Wang JB. Effect of non-fourier heat-flux boundary conditions on heat conduction behavior of laser-irradiated biological tissues[J]. China Journal of Lasers, 2020, 47(12): 298-307.
[25]Maillet D. A review of the models using the Cattaneo and Vernotte hyperbolic heat equation and their experimental validation[J]. International Journal of Thermal Sciences, 2019,139: 424-432.
[26]Singh S, Repaka R. Effect of different breast density compositions on thermal damage of breast tumor during radiofrequency ablation[J]. Applied Thermal Engineering, 2017,125: 443-451.
[27]Hassanpour S, Saboonchi A. Modeling of heat transfer in a vascular tissue-like medium during an interstitial hyperthermia process[J]. Journal of Thermal Biology, 2016, 62(Pt B): 150-158.
[28]Zhang B, Moser M, Zhang EM, et al. A review of radiofrequency ablation: large target tissue necrosis and mathematical modelling[J]. Physica Medica, 2016, 32(8): 961-971.
[29]Liang AS, Munier SM, Danish SF. Mathematical modeling of thermal damage estimate volumes in MR‐guided laser interstitial thermal therapy[J]. Journal of Neuroimaging, 2021, 31(2): 334-340.
[30]Amini S, Ahmadikia H. New approach of controlling the area affected in brain tumour treatment by LITT[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2021, 24(11): 1221-1227.
[31]Silva D, Sharma M, Juthani R, et al. Magnetic resonance thermometry and laser interstitial thermal therapy for brain tumors[J]. Neurosurgery Clinics of North America, 2017, 28(4): 525-533.
[32]Ahmed M, Solbiati L, Brace CL, et al. Image-guided tumor ablation: standardization of terminology and reporting criteria—a 10-year update[J]. Journal of Vascular and Interventional Radiology, 2014, 25(11): 1691-1705.e4.
[33]Rossmanna C, Haemmerich D. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures[J].Critical Reviews in Biomedical Engineering, 2014, 42(6): 467-492.
[34]江世臣,張紀(jì)莊,張學(xué)學(xué).基于動態(tài)光熱作用模型的激光誘導(dǎo)腫瘤間質(zhì)熱療中的參數(shù)選擇[J].激光生物學(xué)報, 2006,15(3): 221-227.
Jiang SC, Zhang JZ, Zhang XX. Parameters selection based on the dynamic photo-thermal model during laser-induced interstitial thermotherapy[J]. Acta Laser Biology Sinica, 2006,15(3): 221-227.
[35]彭媛媛,吳淑蓮,李志芳,等.基于有限元分析的組織光熱耦合相互作用模型[J]. 光電子, 2016, 6(1): 1-9.
Peng YY, Wu SL, Li ZF, et al. Tissue photothermal coupling interaction model based on finite element analysis[J]. Optoelectronics, 2016, 6(1): 1-9.
[36]Schwarzmaier HJ, ?Eickmeyer F, Fiedler VU, et al. Basic principles of laser induced interstitial thermotherapy in brain tumors[J]. Medical Laser Application, 2002, 17(2): 147-158.
[37]Jiang SC, Zhang XX. Effects of dynamic changes of tissue properties during laser-induced interstitial thermotherapy (LITT)[J]. Lasers in Medical Science, 2005, 19(4): 197-202.
[38]Abraham JP, Sparrow EM. A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure-and necrosis dependent perfusion, and moisture-dependent properties[J].International Journal of Heat and Mass Transfer, 2007, 50(13-14): 2537-2544.
[39]Fasano A, H?mberg D, Naumov D. On a mathematical model for laser-induced thermotherapy[J]. Applied Mathematical Modelling, 2010, 34: 3831-3840.
[40]Salavati ME, Baygi MHM. Effect of applicator changes on light propagation and heat generation in biological tissue during laser irradiation in LITT[C]//2012 19th Iranian Conference of Biomedical Engineering (ICBME 2012). Tehran: ICBME, 2012: 278-283.
[41]Hafez DM, Liekweg C, Leuthardt EC. Staged laser interstitial thermal therapy (LITT) treatments to left insular low-grade glioma[J]. Neurosurgery, 2020, 86(3): E337-E342.
[42]Ivarsson K, Olsrud J, Sturesson C, et al. Feedback interstitial diode laser (805 nm) thermotherapy system: ex vivo evaluation and mathematical modeling with one and four‐fibers[J]. Lasers in Surgery and Medicine, 1998, 22(2): 86-96.
[43]Klingenberg M, Bohris C, Niemz MH, et al. Multifibre application in laser-induced interstitial thermotherapy under on-line MR control[J]. Lasers in Medical Science,2000, 15(1): 6-14.
[44]O'Connor KP, Palejwala AH, Milton CK, et al. Laser interstitial thermal therapy case series: choosing the correct number of fibers depending on lesion size[J]. Operative Neurosurgery, 2020, 20(1): 18-23.
[45]Richardson HH, Carlson MT, Tandler PJ, et al. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions[J]. Nano Letters, 2009, 9(3):1139-1146.
[46]Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(23): 13549-13554.
[47]Oneal D. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles[J]. Cancer Letters, 2004, 209(2): 171-176.
[48]Leung JP, Wu S, Chou KC, et al. Investigation of sub-100 nm gold nanoparticles for laser-induced thermotherapy of cancer[J]. Nanomaterials, 2013, 3(1): 86-106.
[49]Lamien B, Rangel Barreto Orlande H, Antonio Bermeo Varón L, et al. Estimation of the temperature field in laser-induced hyperthermia experiments with a phantom[J]. International Journal of Hyperthermia, 2018, 35(1): 279-290.
[50]李景華, 李振偉, 郭靜玉,等. 磁熱療腫瘤域溫度場分布的仿真研究[J]. 數(shù)理醫(yī)藥學(xué)雜志, 2016, 29(8): 1107-1108.
Li JH, Li ZW, Guo JY, et al. Research on simulation on temperature distribution of tumor-areain magnetic hyperthermia[J]. Journal of Mathematical Medicine, 2016, 29(8): 1107-1108.
[51] Zhang J, Jin C, He ZZ, et al. Numerical simulations on conformable laser-induced interstitial thermotherapy through combined use of multi-beam heating and biodegradable nanoparticles[J]. Lasers in Medical Science, 2014, 29(4): 1505-1516.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]