51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于Transformer的血管內(nèi)超聲圖像分割

Transformer-based intravascular ultrasound image segmentation

作者: 李佳松  曹洪帥  舒麗霞  藺嫦燕 
單位:首都醫(yī)科大學(xué)附屬北京安貞醫(yī)院(北京 100029)&nbsp; &nbsp;首都醫(yī)科大學(xué)臨床生物力學(xué)應(yīng)用基礎(chǔ)研究所北京市重點(diǎn)實(shí)驗(yàn)室(北京 100069)<br />通訊作者:藺嫦燕。E-mail: [email protected]
關(guān)鍵詞: 血管內(nèi)超聲圖像;深度學(xué)習(xí);Transformer;分割;鈣化 
分類號:R318.04
出版年·卷·期(頁碼):2023·42·1(16-20)
摘要:

目的 提出一種基于Transformer的血管內(nèi)超聲圖像分割方法,以解決冠狀動脈鈣化病變血管內(nèi)超聲圖像顯影不完全導(dǎo)致的分割管腔、外彈力膜和鈣化斑塊精度不高的問題。方法 采用深度學(xué)習(xí)方法,在UNet結(jié)構(gòu)的基礎(chǔ)上用多分辨率卷積層提取不同大小類別特征,在特征編碼模塊與特征解碼模塊之間使用Transformer聯(lián)系上下文信息,同時分割管腔、外彈力膜和鈣化斑塊。最后以34個40 MHz血管內(nèi)超聲序列得到的訓(xùn)練集720張和測試集240張為例對上述方法進(jìn)行訓(xùn)練和測試。結(jié)果 外彈力膜分割杰卡德系數(shù) (Jaccard index,JI)為0.92,豪斯多夫距離(Hausdorff distance,HD)為0.84 mm;管腔分割JI為0.85, HD為1.44 mm;鈣化分割JI為0.67, HD為0.68 mm。結(jié)論 該方法能夠提升血管內(nèi)超聲圖像的分割精度,并且在鈣化病變血管顯影不完全時能夠保持分割效果。

Objective To propose a intravascular ultrasound image segmentation method based on Transformer,and to solve the problem of low precision in segmenting of lumen, external elastic membrane and calcified plaque caused by incomplete development of intravascular ultrasound image of coronary artery calcification disease. Methods A deep learning technique was employed to extract different size category features using multi-resolution convolutional layers based on UNet structure. Additionally, Transformer was used to link contextual information between feature encoding module and feature decoding module. For training and testing the above method, 34 40 MHz intravascular ultrasound sequences were captured, along with 720 training sets and 240 test sets. Results External elastic membrane segmentation JI was 0.92,HD was 0.84 mm;lumen segmentation JI was 0.85,HD was 1.44 mm;calcification segmentation JI was 0.67,HD was 0.68 mm. Conclusions The method can improve the segmentation accuracy of intravascular ultrasound images and maintain the segmentation effect when the development of calcified lesion vessels is incomplete.

參考文獻(xiàn):

[1] Nissen SE, Yock P. Intravascular ultrasoundnovel pathophysiological insights and current clinical applications [J]. Circulation, 2001, 103: 604-16.
[2] Wang X, Matsumura M, Mintz GS, et al. In vivo calcium detection by comparing optical coherence tomography, intravascular ultrasound, and angiography [J]. JACC Cardiovasc Imaging, 2017, 10(8): 869-79.
[3] 王偉民, 霍勇, 葛均波. 冠狀動脈鈣化病變診治中國專家共識(2021版)[J]. 中國介入心臟病學(xué)雜志, 2021,29(5):251-259.
[4] Huang C, Wang J, Xie Q, et al. Analysis methods of coronary artery intravascular images: A review [J]. Neurocomputing, 2022 ,489: 27-39.
[5] Jodas DS, Pereira AS, Tavares JMR. Automatic segmentation of the lumen region in intravascular images of the coronary artery [J]. Medical image analysis, 2017, 40: 60-79.
[6] Hammouche A, Cloutier G, Tardif JC, et al. Automatic IVUS lumen segmentation using a 3D adaptive helix model [J]. Computers in Biology and Medicine, 2019, 107: 58-72.
[7] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. Singapore, Singapore: Springer, Cham, 2015: 234-241.
[8] Yang J, Faraji M, Basu A. Robust segmentation of arterial walls in intravascular ultrasound images using Dual Path U-Net [J]. Ultrasonics, 2019, 96: 24-33.
[9] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [J]. Advances in neural information processing systems, 2017, 30: 5998-6008.
[10] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [EB/OL]. arXiv .2020-10-22[2021-06-03]. https://doi.org/10.48550/arXiv.2010.11929.
[11] Chen J, Lu Y, Yu Q, et al. Transunet: Transformers make strong encoders for medical image segmentation [EB/OL]. arXiv.2021-02-08[2021-12-09].https://doi.org/10.48550/arXiv.2102.04306
[12] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//International conference on machine learning. Lille, France: PMLR, 2015: 448-456.
[13] Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks[C]//Proceedings of the fourteenth international conference on artificial intelligence and statistics. Ft. Lauderdale, FL, USA: JMLR Workshop and Conference Proceedings, 2011: 315-323.
[14] Lin A, Chen B, Xu J, et al. Ds-transunet: Dual swin transformer u-net for medical image segmentation [J]. IEEE Transactions on Instrumentation and Measurement, 2022,71:4005615.
[15] Yan X, Tang H, Sun S, et al. After-unet: Axial fusion transformer unet for medical image segmentation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa, HI, USA: IEEE press, 2022: 3971-3981.
[16] Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal, QC, Canada: IEEE press, 2021: 10012-10022.
[17] 汪琳琳, 施俊, 韓振奇,等. 結(jié)合卷積神經(jīng)網(wǎng)絡(luò)與圖卷積網(wǎng)絡(luò)的乳腺癌病理圖像分類研究[J]. 北京生物醫(yī)學(xué)工程, 2021, 40(2): 130-138.
Wang LL,Shi J,Han ZQ,et al. Research on breast cancer pathological image classification combined with convolution neural network and graph convolution network[J]. Beijing Biomedical Engineering, 2021, 40(2): 130-138.
[18] Eigen D, Fergus R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture[C]//Proceedings of the IEEE international conference on computer vision. Washington, DC, USA: IEEE press, 2015: 2650-2658.
[19] Shen W, Zhou M, Yang F, et al. Multi-scale convolutional neural networks for lung nodule classification[C]//International conference on information processing in medical imaging. Sabhal Mor Ostaig, Isle of Skye, United Kingdom: Springer, Cham, 2015: 588-599.
[20] Madhavan MV, Tarigopula M, Mintz GS, et al. Coronary artery calcification: pathogenesis and prognostic implications [J]. Journal of The American College of Cardiology, 2014, 63(17): 1703-1714.
[21] Wu H, Chen S, Chen G, et al. FAT-Net: Feature adaptive transformers for automated skin lesion segmentation [J]. Medical Image Analysis, 2022, 76: 102327.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]