51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于光電容積脈搏波的精神疲勞評(píng)估方法

Mental fatigue assessment method based on photoplethysmography signal

作者: 余越  嚴(yán)良文  曹可樂(lè) 
單位:上海大學(xué)機(jī)電工程與自動(dòng)化學(xué)院(上海 200444)<br />通信作者:嚴(yán)良文。E-mail: [email protected]
關(guān)鍵詞: 疲勞評(píng)估;光電容積脈搏波;特征提取;機(jī)器學(xué)習(xí);relief-F 
分類號(hào):R318.04
出版年·卷·期(頁(yè)碼):2023·42·1(45-51)
摘要:

目的 針對(duì)精神疲勞難于定量評(píng)估的問(wèn)題,本文探索一種非侵入式可穿戴檢測(cè)方法獲取人體生理參數(shù),從而實(shí)現(xiàn)對(duì)人體精神疲勞的定量評(píng)估。方法 搭建光電容積脈搏波(photoplethysmography, PPG)采集平臺(tái)采集20名健康在校生的PPG信號(hào),對(duì)PPG信號(hào)進(jìn)行預(yù)處理和特征提取,獲取時(shí)、頻域共143維特征。使用機(jī)器學(xué)習(xí)方法建立分類模型,對(duì)比特征選擇方法皮爾遜相關(guān)系數(shù)法、F檢驗(yàn)和relief-F得到特征權(quán)值,選擇最優(yōu)的特征子集,使用降維后的特征子集訓(xùn)練模型,減少?gòu)?fù)雜度和過(guò)擬合概率。結(jié)果 與實(shí)際狀態(tài)對(duì)比,基于該方法的單個(gè)體疲勞檢測(cè)平均準(zhǔn)確率為92.48%,多個(gè)體疲勞檢測(cè)準(zhǔn)確率最大值為92.2%,可以有效地識(shí)別精神疲勞。結(jié)論 光電容積脈搏波信號(hào)經(jīng)過(guò)時(shí)頻域分析構(gòu)建的特征能夠使用機(jī)器學(xué)習(xí)算法進(jìn)行準(zhǔn)確的精神疲勞狀態(tài)分類評(píng)估。

Objective In view of the difficulty in quantitative assessment of mental fatigue, this paper explores a non-invasive wearable detection method to obtain human physiological parameters, so as to achieve quantitative assessment of human mental fatigue. Methods PPG signals of 20 healthy school students were collected by photoplethysmography (PPG) acquisition platform. PPG signals were preprocessed and features were extracted. A total of 143 dimensional features were obtained in time and frequency domains. The machine learning method was used to establish the classification model, and the feature weights were obtained by comparing the feature selection method Pearson correlation coefficient method, F test and Relief -F. The optimal feature subset was selected, and the feature subset training model after dimension-reduction was used to reduce the complexity and overfitting probability. Results Compared with the actual state, the average accuracy of individual fatigue detection based on this method was 92.48%. The maximum accuracy of multi-individual fatigue detection is 92.2%, which can effectively identify mental fatigue. Conclusions The features constructed by time-frequency domain analysis of photoplethysmography signals can be used for accurate mental fatigue state classification assessment using machine learning algorithms.

參考文獻(xiàn):

[1]苗雨, 劉曉虹, 劉偉志, 等. 多維疲勞量表中文版在軍隊(duì)基層醫(yī)護(hù)人員中的初步修訂[J]. 中國(guó)心理衛(wèi)生雜志, 2008, 22(09): 658-660, 668.
Miao Y, Liu XH, Liu ZW, et al. Initial revision of the chinese version of multidimensional fatigue inventory-20 in medical staff of military basic level [J]. Chinese Mental Health Journal, 2008(09): 658-660, 668.
[2] kerstedt T,Gillberg M. Subjective and objective sleepiness in the active individual[J]. Taylor & Francis, 2009, 52(1-2): 29-37.
[3]何金良. 人體疲勞評(píng)價(jià)標(biāo)準(zhǔn)綜述[J]. 西藏醫(yī)藥雜志, 2013, 34(02): 29-32.
He JL. Review of human fatigue evaluation criteria[J]. Tibetan Medicine, 2013, 34(02): 29-32.
[4]趙曉華, 房瑞雪, 榮建, 等. 基于生理信號(hào)的駕駛疲勞綜合評(píng)價(jià)方法試驗(yàn)研究[J]. 北京工業(yè)大學(xué)學(xué)報(bào), 2011, 37(10): 1511-1516, 1523.
Zhao XH, Fang RX, Rong J, et al. Experiment study on comprehensive evaluation method of driving fatigue based on physiological signals[J]. Journal of Beijing University of Technology. 2011, 37(10): 1511-1516, 1523.
[5] Lee BG, Park JH, Pu CC, et al. Mobile-based kernel-fuzzy-c-means-wavelet for driver fatigue prediction with cloud computing[C]. Sensors. IEEE, 2014:1236-1239.
[6] 于露, 金龍哲, 徐明偉, 等. 基于光電容積脈搏波的有限空間生理疲勞測(cè)量[J]. 工程科學(xué)學(xué)報(bào), 2018, 40(10): 1215-1222.
Yu L, Jin LZ, Xu MW, et al. Confined space physiological fatigue measurement based on photoplethysmography pulse wave signal[J]. Chinese Journal of Engineering, 2018, 40(10): 1215-1222.
[7]趙小靜, 路海月, 王夢(mèng)悅,等. 基于心率變異性的腦力疲勞檢測(cè)[J]. 中國(guó)醫(yī)學(xué)物理學(xué)雜志, 2018, 35(5): 592-597.
Zhao XJ, Lu HY, Wang MY, et al. Mental fatigue detection based on heart rate variability[J]. Chinese Journal of Medical Physics, 2018, 35(5): 592-597.
[8]王大偉, 賈榮叢, 王劃一. 基于Matlab的巴特沃斯濾波器設(shè)計(jì)[J]. 現(xiàn)代電子技術(shù), 2012, 35(21): 71-72, 75.
Wang DW, Jia RC, Wang HY. Design of Butterworth analog filter based on Matlab[J]. Modern electronics technique, 2012, 35(21): 71-72, 75.
[9] 孔令杰. 脈搏圖像與心電信號(hào)多信息同步采集及其應(yīng)用研究[D].蘭州:蘭州理工大學(xué), 2011.
Kong LJ. Synchronous acquisition and application based on multi-information of pulse images and ECG signals[D]. Lanzhou:Lanzhou University of Technology, 2011.
[10] 楊琳, 張松, 楊益民, 等. 利用三次樣條差值法抑制脈搏波基線漂移[J]. 北京生物醫(yī)學(xué)工程, 2010, 29(2): 198-200.
Yang L, Zhang S, Yang YM, et al. Removal of pulse waveform baseline drift using cubic spline interpolation[J]. Beijing Biomedical Engineering, 2010, 29(02): 198-200.
[11] 李頂立. 基于脈搏波的無(wú)創(chuàng)連續(xù)血壓測(cè)量方法研究[D]. 杭州:浙江大學(xué), 2008.
Li SL. Research on non-invasive continuous blood pressure measurement based on pulse wave[D]. Hangzhou: Zhejiang University, 2008.
[12] Mesa I, Rubio A, Tubia I, et al. Channel and feature selection for a surface electromyographic pattern recognition task[J]. Expert Systems with Applications, 2014, 41(11): 5190-5200.
[13] Chieh TC, Mustafa MM, Hussain A, et al. Development of vehicle driver drowsiness detection system using electrooculogram (EOG)[C]. 2005 1st International Conference on Computers, Communications, & Signal Processing with Special Track on Biomedical Engineering. IEEE. 2005: 165-168.
[14] 黃詩(shī)童, 張威強(qiáng), 張朋柱. 基于HRV分析的可穿戴心電儀精神疲勞檢測(cè)[J]. 計(jì)算機(jī)應(yīng)用研究, 2019, 36(07): 2093-2097, 2103.
Huang ST, Zhang WQ, Zhang PZ. Detection of mental fatigue with wearable ECG devices based on HRV analysis[J]. Application Research of Computers, 2019, 36(07): 2093-2097, 2103.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]