51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
氧化鐵納米顆粒對(duì)靜止?fàn)顟B(tài)白血病細(xì)胞的作用研究

The effects of iron oxide nanoparticles on quiescent leukemia cells

作者: 李宛清  張雪  溫濤  劉健  孟潔  許海燕 
單位:中國(guó)醫(yī)學(xué)科學(xué)院基礎(chǔ)醫(yī)學(xué)研究所,北京協(xié)和醫(yī)學(xué)院基礎(chǔ)學(xué)院(北京 &nbsp;100005)<br />通信作者:許海燕,E-mail:[email protected];孟潔,E-mail:[email protected]
關(guān)鍵詞: 氧化鐵納米顆粒;白血病細(xì)胞;靜止;氧化應(yīng)激;凋亡 
分類(lèi)號(hào):&nbsp;R318.04
出版年·卷·期(頁(yè)碼):2023·42·1(52-56)
摘要:

目的 研究二巰基丁二酸修飾的四氧化三鐵納米顆粒(DMSA-Fe3O4 NPs)對(duì)靜止?fàn)顟B(tài)白血病細(xì)胞的作用及機(jī)制。方法 利用透射電鏡觀察納米顆粒形貌;用低血清培養(yǎng)基(0.5% FBS)誘導(dǎo)細(xì)胞進(jìn)入靜止?fàn)顟B(tài),采用普魯士藍(lán)染色法與鄰二氮菲鐵定量法檢測(cè)DMSA-Fe3O4 NPs進(jìn)入Kasumi-1細(xì)胞的情況;通過(guò)乳酸脫氫酶法、細(xì)胞氧化應(yīng)激熒光探針和凋亡檢測(cè)試劑分析 DMSA-Fe3O4 NPs對(duì)Kasumi-1細(xì)胞的作用。結(jié)果 DMSA-Fe3O4 NPs可進(jìn)入靜止?fàn)顟B(tài)的Kasumi-1細(xì)胞,細(xì)胞內(nèi)鐵含量與DMSA-Fe3O4 NPs濃度成正比;與此同時(shí),細(xì)胞活性降低,細(xì)胞內(nèi)ROS與脂質(zhì)過(guò)氧化物水平升高,細(xì)胞發(fā)生凋亡。正常培養(yǎng)的Kasumi-1細(xì)胞活性和氧化應(yīng)激水平不受DMSA-Fe3O4 NPs的影響。結(jié)論 DMSA-Fe3O4 NPs可進(jìn)入靜止?fàn)顟B(tài)的白血病細(xì)胞并引起細(xì)胞凋亡。

Objective To investigate the effect of dimercaptosuccinic acid modified ferric oxide nanoparticles (DMSA-Fe3O4 NPs) on quiescent acute myeloid leukemia cell line (Kasumi-1). Methods The morphology of DMSA-Fe3O4 NPs was observed by transmission electron microscopy. The low serum containing medium (0.5% FBS) was applied to induce Kasumi-1 cells to the quiescent state. The cellular uptake of DMSA-Fe3O4 NPs was analyzed by Prussian blue staining and phenanthroline spectrophotometric analysis. The release of lactate dehydrogenase, reactive oxidative species and apoptosis of Kasumi-1 treated with DMSA-Fe3O4 NPs at different concentrations were examined. Results The DMSA-Fe3O4 NPs entered the quiescent Kasumi-1 cells and the content of intracellular iron increased in a nanoparticles dose dependent manner. The viability of the quiescent Kasumi-1 cells was significant decreased and the intracellular ROS and lipid peroxide were increased as well. The Kasumi-1 cells cultured with the complete culture medium (10% FBS) was not affected by DMSA-Fe3O4 NPs. Conclusions DMSA-Fe3O4 NPs could preferably enter the quiescent Kasumi-1 cells, which resulted in the upregulation of intracellular oxidative stress and cell apoptosis.

參考文獻(xiàn):

[ 1 ] Yadwade R, Kirtiwar S, Ankamwar B. A Review on Green Synthesis and Applications of Iron Oxide Nanoparticles[J]. Journal of Nanoscience and Nanotechnology, 2021, 21(12): 5812-5834.
[ 2 ] Zhi DF, Yang T, Yang J, et al. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy[J]. Acta Biomaterialia, 2020, 102: 13-34.?
[ 3 ] Jeon M, Halbert MV, Stephen ZR, et al. Iron oxide nanoparticles as T(1) contrast agents for magnetic resonance imaging: fundamentals, challenges, applications, and prospectives[J]. Advanced Materials, 2021, 33(23): e1906539.
[ 4 ] Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics[J]. Expert Opinion on Drug Delivery, 2019, 16(1): 69-78.
[ 5 ] Zhang W, Yu ZL, Wu M, et al. Magnetic and folate functionalization enables rapid isolation and enhanced tumor-targeting of cell-derived microvesicles[J]. ACS Nano, 2017, 11(1): 277-290.
[ 6 ] Shan XH, Wang P, Xiong F, et al. Detection of human breast cancer cells using a 2-deoxy-D-glucose-functionalized superparamagnetic iron oxide nanoparticles[J]. Cancer Biomarkers, 2017, 18(4): 367-374.
[ 7 ] Lu M, Cohen MH, Rieves D, et al. FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease[J]. American Journal of Hematology, 2010, 85(5): 315-319.
[ 8 ] Pucci C, Degl'Innocenti A, Belenli Gümü? M, et al. Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: recent advancements, molecular effects, and future directions in the omics era[J]. Biomaterials Science, 2022.
[ 9 ] Israel LL, Galstyan A, Holler E, et al. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain[J]. Journal of Controlled Release, 2020, 320: 45-62.
[ 10 ] Namvar F, Rahman HS, Mohamad R, et al. Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract [J]. ?International Journal of Nanomedicine, 2014, 9: 2479-88.
[ 11 ] Xie Y, Jiang J, Tang Q, et al. Iron oxide nanoparticles as autophagy intervention agents suppress hepatoma growth by enhancing tumoricidal autophagy [J]. Advanced Science, 2020, 7(16): 1903323.
[ 12 ] Alkahtane AA, Alghamdi HA, Aljasham AT, et al. A possible theranostic approach of chitosan-coated iron oxide nanoparticles against human colorectal carcinoma (HCT-116) cell line[J]. Saudi Journal of Biological Sciences, 2022, 29(1): 154-160.
[ 13 ] Martinez A, Kaittanis C, Rabie MO, et al. FDA-approved ferumoxytol displays anti-leukaemia efficacy against cells with low ferroportin levels[J]. Nature Nanotechnology, 2019, 14(6): 616-622.
[ 14 ] Lee S, Micalizzi D, Truesdell SS, et al. A post-transcriptional program of chemoresistance by AU-rich elements and TTP in quiescent leukemic cells[J]. Genome Biology, 2020, 21(1): 33.
[ 15 ] Wang YL, Ding L, Yao CJ, et al. Toxic effects of metal oxide nanoparticles and their underlying mechanisms[J]. Science China Materials, 2017, 60(2): 93-108.
[ 16 ] Andrade RGD, Veloso SRS, Castanheira EMS. Shape anisotropic iron oxide-based magnetic nanoparticles: synthesis and biomedical applications[J]. International Journal of Molecular Sciences, 2020, 21(7): 2455
[ 17 ] Wei H, Hu Y, Wang J, et al. Superparamagnetic iron oxide nanoparticles: cytotoxicity, metabolism, and cellular behavior in biomedicine applications[J]. International Journal of Nanomedicine, 2021, 16: 6097-6113.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話(huà):010-64456508  傳真:010-64456661
電子郵箱:[email protected]