51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
心肌細胞電脈沖作用下電場分布仿真結(jié)果與分析

Simulation results and analysis of electric field distribution under the action of electrical pulses in cardiac muscle cells

作者: 朱宇成  王群山  莫斌峰  牛金海 
單位:上海交通大學(xué) 生物醫(yī)學(xué)工程學(xué)院(上海 &nbsp;200240)<br />上海交通大學(xué)醫(yī)學(xué)院附屬新華醫(yī)院(上海 &nbsp;200092)<br />通信作者:牛金海,E-mail:[email protected];莫斌峰,E-mail:[email protected]&nbsp;
關(guān)鍵詞: 心臟消融;心肌細胞;脈沖電場;電勢分布;仿真分析 
分類號:R318.04
出版年·卷·期(頁碼):2023·42·1(67-73)
摘要:

目的 細胞電脈沖刺激仿真是研究心臟電脈沖消融的一種仿真方式,本文建立橢球形細胞電脈沖刺激仿真模型,模擬心肌細胞受到電脈沖刺激下的情況,研究電場入射方向和細胞長度對其電場分布和跨膜電位的影響。方法 通過COMSOL5.5軟件進行仿真,以球形細胞模型為基礎(chǔ),在邊長60μm的立方體空間中建立橢球形細胞模型。于垂直于Z軸的兩面施加2.4 V電壓,用以模擬心肌細胞在外加勻強電場作用下的電勢分布情況。改變脈沖電場與細胞長軸的夾角,研究0、30°、60°、90°的不同電場入射角度對心肌細胞電勢分布和跨膜電位的影響。保持入射角為0,研究跨膜電位最大值與細胞長軸直徑的關(guān)系。結(jié)果 對于橢球形的心肌細胞,電場的入射角從0°增大到90°時,跨膜電位從1.068V減小至0.373V,同時最大跨膜電位的位置也發(fā)生改變。入射角為0°時,跨膜電位最大值V與細胞長軸直徑D的線性回歸方程為V_2=81.1916+38.6079D_2 ,r^2=0.9981。結(jié)論 電場入射角越大,細胞跨膜電位越低;細胞長軸直徑越長,跨膜電位最大值越大。該研究對后續(xù)心肌細胞電脈沖刺激實驗及心臟電脈沖消融的臨床試驗具有參考意義。

Objective Cell electrical pulse stimulation simulation is a method to study cardiac electrical pulse ablation. In this paper, an ellipsoidal cell electrical pulse stimulation simulation model is established to simulate the situation of myocardial cells stimulated by electrical pulses, and to study the electric field distribution direction and cell length on the electric field and transmembrane potential. Methods Using COMSOL5.5 software for simulation, based on the spherical cell model, an ellipsoidal cell model is established to simulate the potential distribution of cardiomyocytes under the action of a uniform electric field. Apply 2.4 V voltage on both sides perpendicular to the Z axis to simulate the potential distribution of myocardial cells under the action of an external uniform electric field. By changing the angle between the pulsed electric field and the long axis of the cell, the effects of different electric field incidence angles of 0 °, 30 °, 60 ° and 90 ° on the potential distribution and transmembrane potential of the myocardial cell are studied. The relationship between the maximum transmembrane potential and the diameter of the long axis of cells is studied by keeping the angle of incidence at 0.Results For ellipsoidal cardiomyocytes, when the incidence angle of the electric field increases from 0 ° to 90 °, the transmembrane potential decreases from 1.068V to 0.373V, and the position of the maximum transmembrane potential also changes. When the incidence angle of the electric field is 0 °, the linear regression equation between the maximum transmembrane potential V and the cell long axis diameter D is V_2=81.1916+38.6079D_2 ,r^2=0.9981. Conclusions The greater the incident angle of electric field, the lower the transmembrane potential of cells; The longer the cell long axis diameter is, the greater the transmembrane potential is. This study has reference significance for the subsequent experiment of myocardial cell electric pulse stimulation and the clinical trial of cardiac electric pulse ablation.

參考文獻:

[1]陳琳琳,衣少雷,王蔚宗,等.預(yù)測心房顫動患者射頻消融術(shù)后復(fù)發(fā)的危險因素[J].山東大學(xué)學(xué)報(醫(yī)學(xué)版),2019,57(3):49-57.
Chen LL, Yi SL,Wang WZ, et al. Risk factors of recurrent atrial fibrillation after adiofrequency catheter ablation[J]. Journal of Shandong University(Health Sciences),2019,57(3):49-57.
[2]曾寶玉. 雙極射頻消融房顫的熱損傷過程分析及實驗研究[D].上海:上海交通大學(xué),2016.
Zeng BY. Study on thethremal damage process and experimental analysis of bipolar radiofrequency ablation for atrial fibrillation[D].Shanghai:Shanghai Jiao Tong University,2016.
[3]孫鋼.不可逆電穿孔技術(shù)消融腫瘤研究進展[J].介入放射學(xué)雜志,2015,24(4):277-281.
Sun G. Irreversible electroporation technology for ablation treatment of tumors: recent progress in research[J]. Journal of Interventional Radiology,2015,24(4):277-281.
[4]Chiapperino MA, Mescia L, Bia P, et al. Experimental and numerical study of electroporation induced by long monopolar and short bipolar pulses on realistic 3d irregularly shaped cells[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(10): 2781-2788.
[5]Reddy VY, Neuzil P, Koruth JS, et al. Pulsed field ablation for pulmonary vein isolation in atrial fibrillation[J]. Journal of the American College of Cardiology,2019,74(3): 315-326.
[6]Reddy VY, Koruth J, Jais P, et al. Ablation of atrial fibrillation with pulsed electric fields: an ultra-rapid, tissue-selective modality for cardiac ablation[J]. JACC: Clinical Electrophysiology, 2018, 4(8): 987-995.
[7]Anic A, Breskovic T, Sikiric I. Pulsed field ablation: a promise that came true[J]. Current Opinion in Cardiology, 2021, 36(1): 5-9.
[8]Wittkampf FH, Van Driel VJ, van Wessel H, et al. Feasibility of electroporation for the creation of pulmonary vein ostial lesions[J]. Journal of Cardiovascular Electrophysiology, 2011, 22(3): 302-309.
[9]Zager Y, Kain D, Landa N, et al. Optimization of irreversible electroporation protocols for in-vivo myocardial decellularization[J]. PLoS One, 2016, 11(11): e0165475.
[10]Neven, Kars, Wessel H, et al. Epicardial linear electroporation ablation and lesion size[J]. Heart Rhythm,2014, 11 8:1465-1470 .
[11]郭飛,姚陳果,李成祥,等.包含頻率色散效應(yīng)的細胞膜和核膜跨膜電位的仿真[J].電工技術(shù)學(xué)報,2013,28(11):182-188.
Guo F,Yao CG,Li CX,ctl.Simulation study of trans-membrane potential of plasma and nuclear membranes with frequency-dispersion[J].Transactions of China Electrotechnical Society,2013,28(11):182-188.
[12]姚陳果,呂彥鵬,趙亞軍,等.基于能量概率與微孔力模型的脈沖電場對細胞電穿孔動態(tài)過程的仿真分析[J].電工技術(shù)學(xué)報,2016,31(23):141-149.
Yao CG,Lv YP,Zhao YJ,et al.Simulation analysis on dynamic process of electroporation by the model based on energy probability and pore force in cell exposed to pulsed electric field[J].Transactions of China Electrotechnical Society,2016,31(23):141-149.
[13]郭飛,張琳,劉欣,彭豪.基于電穿孔和孔徑變化方程的球形細胞微孔特性研究[J].中國生物醫(yī)學(xué)工程學(xué)報,2020,39(5):577-586.
Guo F,Zhang L,Liu X,et al.Simulation analysis of microporous characteristics of spherical cells based on electroporation and pore radii change equation[J].Chinese Journal of Biomedical Engineering,2020,39(5):577-586.
[14]郭志坤.現(xiàn)代心臟組織學(xué)[M].北京:人民衛(wèi)生出版社, 2007.
Guo ZK. Modern heart histology[M]. Beijing: People's Medical Publishing House, 2007.
[15]Schoenbach KH, Katsuki S, Stark RH,et al. Bioelectrics-new applications for pulsed power technology[J]. IEEE Transactions on Plasma Science, 2002,30(1): 293-300.
[16]胡亞哲,程邦昌,王和平,等.運動性心臟肥大心肌細胞超微結(jié)構(gòu)改變及意義[J].中華心血管病雜志,2005,33(10):69-72.
Hu YZ,Cheng BC,Wang HP,et al.The ultrastructure change of cardiomyocyte in athlete’s heart[J].Chinese Journal of Cardiology,2005,33(10):69-72.
[17]劉宏亮,米彥,徐進,等.基于網(wǎng)格傳輸網(wǎng)絡(luò)模型的納秒脈沖作用下單細胞電穿孔規(guī)律仿真研究[J].高電壓技術(shù),2018,44(2):624-632.
Liu HL,Mi Y,Xu J,et al.Simulation study on electroporation law in a single-cell system exposed to nanosecond pulsed electric fields based on mesh transport network model[J].High Voltage Engineering,2018,44(2):624-632.
[18]Iwona K,Malgorzata K, Anna S,et al. Electroporation-induced changes in normal immature rat myoblasts (H9C2)[J]. General physiology and Biophysics,2012,31(1): 19-25.
[19]張玉,郭飛.納秒脈沖脈寬參數(shù)與細胞凋亡的量效關(guān)系研究[J].重慶醫(yī)學(xué),2021,50(5):721-726.
Zhang Y,Guo F.Study of dose-effect relationship between the pulse duration of nanosecond pulsed electric field and cell apoptosis[J].Chongqing Medicine,2021,50(5):721-726.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]