51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于SHOT與目標(biāo)函數(shù)對(duì)稱ICP的低重疊率術(shù)前術(shù)中點(diǎn)云配準(zhǔn)算法

Low overlap rate preoperative and intraoperative point cloud registration algorithm based on SHOT and symmetric objective function ICP

作者: 嚴(yán)文磬  張立靜  王瑋  武博 
單位:首都醫(yī)科大學(xué)生物醫(yī)學(xué)工程學(xué)院(北京 100069)<br />首都醫(yī)科大學(xué)臨床生物力學(xué)應(yīng)用基礎(chǔ)研究北京市重點(diǎn)實(shí)驗(yàn)室(北京 100069)<br />首都醫(yī)科大學(xué)宣武醫(yī)院(北京 100053)<br />通信作者:武博,副教授。E-mail:[email protected]
關(guān)鍵詞: 點(diǎn)云配準(zhǔn);SHOT;目標(biāo)函數(shù)對(duì)稱ICP;低重疊率 
分類號(hào):R318.04
出版年·卷·期(頁(yè)碼):2023·42·2(111-116)
摘要:

目的 配準(zhǔn)是術(shù)前影像引導(dǎo)的椎弓根螺釘內(nèi)固定術(shù)中的重要環(huán)節(jié)。術(shù)前CT影像三維重建獲得的點(diǎn)云和術(shù)中捕獲的暴露部位點(diǎn)云重疊率低,易受噪聲、遮擋等因素的干擾,使點(diǎn)云配準(zhǔn)更具挑戰(zhàn)性。本文采用局部特征和距離度量相結(jié)合的方式應(yīng)對(duì)低重疊率配準(zhǔn)問(wèn)題。方法 首先利用方向直方圖描述子(signature of histograms of orientations, SHOT)描述子和隨機(jī)抽樣一致算法(random sample consensus, RANSAC)提取并匹配幾何特征相似的點(diǎn),完成初始對(duì)齊。應(yīng)用目標(biāo)函數(shù)對(duì)稱ICP,通過(guò)最小化對(duì)稱化點(diǎn)到面目標(biāo)函數(shù)得到最終變換矩陣。對(duì)來(lái)源于SpineWeb公開數(shù)據(jù)集的5組腰椎數(shù)據(jù)進(jìn)行配準(zhǔn)實(shí)驗(yàn)。結(jié)果 術(shù)前術(shù)中點(diǎn)云配準(zhǔn)實(shí)驗(yàn)中平均配準(zhǔn)誤差為0.128 mm,平均運(yùn)行時(shí)間為5.750 s。結(jié)論 實(shí)驗(yàn)結(jié)果驗(yàn)證了該算法在低重疊率術(shù)前術(shù)中點(diǎn)云配準(zhǔn)中的有效性,使得醫(yī)生能及時(shí)根據(jù)配準(zhǔn)結(jié)果調(diào)整手術(shù)器械,從而提高椎弓根螺釘置入準(zhǔn)確率。

Objective Registration is an important part of preoperative image-guided pedicle screw fixation. The point cloud obtained by the 3D reconstruction of the preoperative CT image and the point cloud of the exposed part captured during the operation have a low overlap rate and are easily interfered by factors such as noise and occlusion, which makes the point cloud registration more challenging. This paper adopted the combination of local geometric features and distance measurement to deal with the problem of low overlap registration. Methods Firstly, the points with similar geometric features were extracted and matched using the signature of histograms of orientations descriptor(SHOT) and the random sample consensus(RANSAC) to complete the initial alignment. Applying the objective function symmetric ICP algorithm, the final transformation matrix was obtained by minimizing the symmetric point-to-surface objective function. Registration experiments were performed on five groups of lumbar spine data from the SpineWeb public dataset. Results In the preoperative and intraoperative point cloud registration experiments, the average registration error was 0.128 mm, and the average running time was 5.750 s. Conclusions The experimental results verify the effectiveness of the algorithm in the preoperative and intraoperative point cloud registration with low overlap rate, which enables doctors to adjust the surgical instruments according to the registration results in time, thus improving the accuracy of pedicle screw placement.

參考文獻(xiàn):

[1] 劉政, 李宏偉, 王爽. 胸腰椎椎弓根螺釘置入技術(shù)的比較分析與展望[J]. 中國(guó)組織工程研究, 2017, 21(19): 3102-3107.
Liu Z, Li HW, Wang S. Pedicle screw fixation for thoracic and lumbar diseases: a comparative analysis and prospects[J]. Chinese Journal of Tissue Engineering Research, 2017, 21(19): 3102-3107.
[2] Swiatek PR, McCarthy MH, Weiner J, et al. Intraoperative image guidance for lateral position surgery[J]. Annals of Translational Medicine, 2021, 9(1): 90.
[3] Li SJ, Yan WP, Chen ML, et al. Virtual bronchoscopic navigation without fluoroscopy guidance for peripheral pulmonary lesions in inexperienced pulmonologist[J]. Chinese Journal of Cancer Research, 2020, 32(4): 530-539.
[4] Cai YL, Wu SJ, Fan XY, et al. A level-wise spine registration framework to account for large pose changes[J]. International Journal of Computer Assisted Radiology and Surgery, 2021, 16(6): 943-953.
[5] Shetty P, Yeole U, Singh V, et al. Navigated ultrasound-based image guidance during resection of gliomas: practical utility in intraoperative decision-making and outcomes[J]. Neurosurgical Focus, 2021, 50(1): E14.
[6] Zhao XZ, Xu WH, Tang ZH, et al. Accuracy of computer-guided implant surgery by a CAD/CAM and laser scanning technique [J]. The Chinese Journal of Dental Research: the Official Journal of the Scientific Section of the Chinese Stomatological Association (CSA), 2014, 17(1): 31-36.
[7] Birnbaum FA, Wang A, Brady CJ. Stereoscopic surgical recording using GoPro cameras: a low-cost means for capturing external eye surgery[J]. JAMA Ophthalmology, 2015, 133(12): 1483-1484.
[8] Li P, Wang RS, Wang YX, et al. Evaluation of the ICP algorithm in 3D point cloud registration[J]. IEEE Access, 2020, 8: 68030-68048.
[9] Aiger D, Mitra NJ, Cohen-Or D. 4-points congruent sets for robust pairwise surface registration[J]. ACM Transactions on Graphics, 2008, 27(3): 85.
[10] Mellado N, Aiger D, Mitra N. Super 4PCS: fast global point cloud registration via smart indexing[J]. Computer Graphics Forum, 2014, 33(5): 205-215.
[11] Raposo C, Barreto JP. Using 2 point+normal sets for fast registration of point clouds with small overlap[C]//2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE Press, 2017: 5652-5658.
[12] Chetverikov D, Stepanov D, Krsek P. Robust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm[J]. Image and Vision Computing, 2005, 23(3): 299-309.
[13] Yang JL, Li HD, Campbell D, et al. Go-ICP: a globally optimal solution to 3D ICP point-set registration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(11): 2241-2254.
[14] Rusu RB, Bradski G, Thibaux R, et al. Fast 3D recognition and pose using the viewpoint feature histogram[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, Taiwan, China: IEEE Press, 2010: 2155-2162.
[15] Rusu RB, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration[C]//2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE Press, 2009: 3212-3217.
[16] Salti S, Tombari F, Stefano LD. SHOT: unique signatures of histograms for surface and texture description[J]. Computer Vision and Image Understanding, 2014, 125: 251-264.
[17] Guo YL, Sohel F, Bennamoun M, et al. Rotational projection statistics for 3D local surface description and object recognition[J]. International Journal of Computer Vision, 2013, 105(1): 63-86.
[18] Shen ZQ, Ma X, Li YB. A hybrid 3D descriptor with global structural frames and local signatures of histograms[J]. IEEE Access, 2018, 6: 39261-39272.
[19] Wang X, Zhu XH, Ying SH, et al. An accelerated and robust partial registration algorithm for point clouds[J]. IEEE Access, 2020, 8: 156504-156518.
[20] Xiong FG, Dong B, Huo W, et al. A local feature descriptor based on rotational volume for pairwise registration of point clouds[J]. IEEE Access, 2020, 8: 100120-100134.
[21] Besl PJ, McKay ND. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.
[22] Chen Y, Medioni G. Object modelling by registration of multiple range images[J]. Image and Vision Computing, 1992, 10(3): 145-155.
[23] Segal A, Haehnel D, Thrun S. Generalized-ICP[C]//Robotics: Science and Systems. Seattle, WA, USA: MIT Press, 2009: 435.
[24] Wang FP, Xiao J, Wang Y, et al. An improved ICP method using Gaussian curvature[J]. Journal of University of Chinese Academy of Sciences, 2019, 36(5): 702-708.
[25] Geng N, Ma FF, Yang HJ, et al. Neighboring constraint-based pairwise point cloud registration algorithm[J]. Multimedia Tools and Applications, 2016, 75(24): 16763-16780.
[26] Koide K, Yokozuka M, Oishi S, et al. Voxelized GICP for fast and accurate 3D point cloud registration[C]//2021 IEEE International Conference on Robotics and Automation. Xi’an, China: IEEE Press, 2021: 11054-11059.
[27] Rusinkiewicz S. A symmetric objective function for ICP[J]. ACM Transactions on Graphics, 2019, 38(4): 1-7.?
[28] Huang XS, Zhang J, Wu Q, et al. A coarse-to-fine algorithm for matching and registration in 3D cross-source point clouds[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(10): 2965-2977.
[29] Fischler MA, Bolles RC. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
[30] Prokop M, Shaikh SA, Kim KS. Low overlapping point cloud registration using line features detection[J]. Remote Sensing, 2019, 12(1): 61.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]