[1]Asghar Z, Asl BM. Automatic detection of obstructive sleep apnea using wavelet transform and entropy-based features from single-lead ECG signal [J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23 (3): 1011–1021. [2]Song C, Liu K, Zhang X, et al. An obstructive sleep apnea detection approach using a discriminative hidden Markov model from ECG signals[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(7): 1532-1542. [3]Xie B, Minn H. Real-time sleep apnea detection by classifier combination[J]. IEEE Transactions on Information Technology in Biomedicine, 2012, 16 (3): 469–477. [4]Sharan RV, Berkovsky S, Xiong H, et al. End-to-end sleep apnea detection using single-lead ECG Signal and 1-D residual neural networks[J]. Journal of Medical and Biological Engineering, 2021, 41: 758–766. [5]Li K, Pan W, Li Y, et al. A method to detect sleep apnea based on deep neural network and hidden Markov model using single-lead ECG signal [J]. Neurocomputing, 2018, 294: 94-101. [6]Sharma H, Sharma KK. An algorithm for sleep apnea detection from single-lead ECG using Hermite Basis functions [J]. Computers in Biology and Medicine, 2016, 77: 116-124. [7]Hassan AR. Computer-aided obstructive sleep apnea detection using normal inverse Gaussian parameters and adaptive boosting[J]. Biomedical Signal Processing and Control, 2016, 29: 22-30. [8]Khalighi S, Sousa T, Santos JM, et al. ISRUC-sleep: a comprehensive public dataset for sleep researchers[J]. Computer Methods and Programs in Biomedicine, 2016, 124: 180-192. [9]周靜,吳效明. 睡眠呼吸暫停綜合征腦電關聯(lián)維特性研究[J].生物醫(yī)學工程學雜志,2017,34(2): 168-172. Zhou J, Wu XM. Study on the property of correlation dimension of sleep apnea syndrome electroencephalogram[J]. Journal of Biomedical Engineering, 2017, 34 (2): 168-172. [10]康志欽,黃麗媚,陳昆龍,等.阻塞性睡眠呼吸暫停綜合征的心率變異性分析[J].心血管病防治知識(學術版), 2019(3): 41-43. [11]梁曉花. 基于腦電心電數(shù)據(jù)融合的睡眠分期[D]. 鎮(zhèn)江:江蘇大學, 2008. [12]Yücelba, Yücelba C, Tezel G, et al. Automatic sleep staging based on SVD, VMD, HHT and morphological features of single-lead ECG signal[J]. Expert Systems with Applications, 2018, 102: 193-206. [13]Hassan AR, Haque A. An expert system for automated identification of obstructive sleep apnea from single-lead ECG using random under sampling boosting[J]. Neurocomputing, 2017, 235: 122-130. [14]余曉敏, 涂岳文,黃超, 等. 基于心電信號的睡眠呼吸暫停綜合征檢測算法[J].生物醫(yī)學工程學雜志, 2013, 30(5): 999-1002. Yu XM, Tu YW, Huang C, et al. An algorithm based on ECG signal for sleep apnea syndrome detection[J]. Journal of Biomedical Engineering, 2013, 30(5): 999-1002. [15]董孝彤, 曲新亮, 魏守水. 用于睡眠呼吸暫停檢測的心電特征穩(wěn)定性分析[J]. 生物醫(yī)學工程研究, 2020, 39(1): 6-10. Dong XT, Qu XL, Wei SS. Stability analysis of electrocardiogram features for sleep apnea detection[J]. Biomedical Engineering Research, 2020, 39(1): 6-10. [16]李曉嵐. 基于Relief特征選擇算法的研究與應用[D].大連: 大連理工大學, 2013. Li XL. The study and application of feature selection algorithms based on relief[D]. Dalian: Dalian University of Technology, 2013. [17]Huang W, Guo B, Shen Y, et al. Sleep staging algorithm based on multichannel data adding and multifeature screening[J]. Computer Methods and Programs in Biomedicine, 2020, 187: 105253. [18]Kumar TS, Kanhangad V. Automated obstructive sleep apnea detection using symmetrically weighted local binary patterns[J]. Electronics Letters, 2017, 53(4): 212-214. [19]Bsoul M, Minn H, Tamil L. Apnea MedAssist: real-time sleep apnea monitor using single-lead ECG[J]. IEEE Transactions on Information Technology in Biomedicine, 2011, 15(3): 416-427. [20]Hassan AR, Haque MA. Computer-aided obstructive sleep apnea screening from single-lead electrocardiogram using statistical and spectral features and bootstrap aggregating [J]. Biocybernetics and Biomedical Engineering, 2016, 36(1): 256-266.
|