[1] 李麗琴. 基于人工智能的慢性腎病分級預(yù)警模型[J]. 時代報告(下半月), 2012(5): 330-331. [2] 徐靜. 徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)評估慢性腎臟病腎小球濾過率[D]. 大連: 大連醫(yī)科大學(xué), 2016. Xu J. Evaluate glomerular filtration rate by the radial basis function neural network in patients with chronic kidney disease [D]. Dalian: Dalian Medical University, 2016. [3] Zahran A, EI-Husseini A, Shoker A. Can cystatin C replace creatinine to estimate glomerular filtration rate? A literature review[J]. American Journal of Nephrology, 2007, 27(2): 197-205. [4] Filler G, B?Kenkamp A, Hofmann W, et al. Cystatin C as a marker of GFR--history, indications, and future research[J]. Clinical Biochemistry, 2005, 38(1): 1-8. [5] 陳有維, 萬福俊, 何樂愚, 等. ?BP 神 經(jīng) 網(wǎng) 絡(luò) 用 于 評 估 腎 小 球 濾 過 率的研究[J]. 臨床醫(yī)學(xué), 2008, 28(5): 107-109, 128.? Chen YW, Wan FJ, He LY, et al. Study of BP neural network in predicting renal glomerular filtration rate[J].Clinical Medicine, 2008, 28(5): 107-109, 128. [6] 張雨濃,劉迅,何良宇,等. 應(yīng)用WASD神經(jīng)網(wǎng)絡(luò)估算腎小球濾過率的研究[J]. 中國科技信息,2014(8): 212-216. Zhang YN, Liu X, He LY, et al. Research on application of WASD neural network to estimating glomerular filtration rate[J]. China Science and Technology Information,2014(8): 212-216.? [7] 張雨濃,何良宇,劉迅,等. 應(yīng)用RBF激勵WASD神經(jīng)網(wǎng)絡(luò)估算GFR[J]. 計算技術(shù)與自動化,2016, 35(1): 22-26. Zhang YN, He LY, Liu X, et al. Application of RBF-activated ?WASD neuronet in estimating GFR[J]. Computing ? Technology and Automation, 2016, 35(1): 22-26. [8] 鄒海英,李智,楊帆. 基于特征選擇的自適應(yīng)模糊神經(jīng)網(wǎng)絡(luò)在腎小球濾過率中的應(yīng)用[J]. 軟件導(dǎo)刊,2018, 17(6): 153-156. [9] 李寧山,劉迅,吳效明,等. 人工神經(jīng)網(wǎng)絡(luò)在腎小球濾過率估算中的應(yīng)用[J]. 第三軍醫(yī)大學(xué)學(xué)報,2012, 34(5): 409-411. Li NS, Liu X, Wu XM, et al. Estimating glomerular ?filtration ?rate with artificial neural network: a model establishment[J]. Acta Academiae Medicinae Militaris Tertiae, 2012, 34(5): 409-411. [10] Li NS, Huang H, Qian HZ, et al. Improving accuracy of estimating glomerular filtration rate using artificial neural network: model development and validation[J]. ?Journal of Translational Medicine, 2020, 18: 120. [11] Liu X, Pei XH, Li NS, et al. Improved glomerular filtration rate estimation by an artificial neural network[J]. PLoS One, 2013, 8(3): e58242. [12] Liu X, Chen YR, Li NS, et al. Estimation of glomerular filtration rate by a radial basis function neural network in patients with type-2 diabetes mellitus[J]. BMC Neuphrology, 2013, 14: 181. [13] Xu J, Guo BY, Liu CY. Evaluation of glomerular filtration rate in chronic kidney disease by radial basis function neural network[J]. Transplantation Proceedings, 2020, 52(3) : 748-753. [14] 梁哲.改進的RBF神經(jīng)網(wǎng)絡(luò)在腎小球濾過率估算中的應(yīng)用[D]. 大連: 大連理工大學(xué), 2016. Liang Z. Application of improved RBF neural networks on glomerular filtration rate estimation[D]. Dalian: Dalian University of Technology, 2016. [15] 楊萬元,王勝男,趙衛(wèi)紅,等. 腎小球濾過率估算模型研究[J].生物醫(yī)學(xué)工程學(xué)雜志, 2013, 30(5): 963-967.? Yang WY, Wang SN, Zhao WH, et al. Research of the glomerular ?filtration ?rate ?estimation ?model[J]. Journal of Biomedical Engineering, 2013, 30(5): 963-967. [16] 高峰,吳曉東,周科平. 基于主成分分析和PSO-ELM算法的排土場穩(wěn)定性預(yù)測模型[J]. 黃金科學(xué)技術(shù),2021, 29(5): 658-668. Gao F, Wu XD, Zhou KP. Prediction model of soil dump stability based on principal component analysis and PSO-ELM algorithm[J]. Gold Science and Technology, 2021, 29(5): 658-668. [17] 敬微微,韓倩,吳昊,等. 主成分分析和反向傳播神經(jīng)網(wǎng)絡(luò)模型在血液透析機預(yù)防維護中的應(yīng)用[J]. 中國醫(yī)學(xué)裝備, 2020, 17(7): 137-140. Jing WW, Han Q, Wu H, et al. Application of PCA and BP neural network model in the preventive maintenance of hemodialysis machine[J]. China Medical Equipment, 2020, 17(7): 137-140. [18] 吳定安,鐘建偉,王新磊,等. 主成分分析和長短期記憶網(wǎng)絡(luò)的電力負荷預(yù)測[J]. 物聯(lián)網(wǎng)技術(shù), 2021, 11(8): 47-51. [19] 劉斌,李立欣,李靜. 一種改進的基于深度前饋神經(jīng)網(wǎng)絡(luò)的極化碼BP譯碼算法[J]. 移動通信,2019, 43(4): 8-14. Liu B, Li LX, Li J. An improved polar BP decoding algorithm based on deep feedforward neural network[J]. Mobile Communications, 2019, 43(4): 8-14. [20] 杜方洲. 基于深度前饋神經(jīng)網(wǎng)絡(luò)的TRMM降水產(chǎn)品降尺度研究[D]. 南京: 南京信息工程大學(xué),2020. Du FZ. Downscaling of TRMM precipitation products based on deep feedforward neural network[D]. ?Nanjing: Nanjing University of Information Science and Technology, 2020. [21] Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine[J]. Nephron, 1976, 16(1): 31-41
|