51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于光電容積脈搏波的無(wú)袖帶血壓測(cè)量技術(shù)研究進(jìn)展

Research progress of cuffless blood pressure measurement technology based on photoplethysmography

作者: 麻琛彬  張鵬  宋凡  孫洋洋  張光磊 
單位:北京航空航天大學(xué)生物與醫(yī)學(xué)工程學(xué)院生物醫(yī)學(xué)工程高精尖創(chuàng)新中心(北京 100191)<br />北京航空航天大學(xué)未來(lái)空天技術(shù)學(xué)院/高等理工學(xué)院(北京 100191)<br />通信作者:張光磊。E-mail: [email protected]
關(guān)鍵詞: 光電容積脈搏波;無(wú)袖帶血壓;信號(hào)處理;機(jī)器學(xué)習(xí);序列學(xué)習(xí) 
分類(lèi)號(hào):R318.04
出版年·卷·期(頁(yè)碼):2023·42·2(194-203)
摘要:

無(wú)袖帶血壓監(jiān)測(cè)技術(shù)由于低生理/心理負(fù)荷等特點(diǎn),在健康監(jiān)測(cè)領(lǐng)域具有廣闊的應(yīng)用前景。其中,基于光電容積脈搏波的無(wú)袖帶血壓測(cè)量技術(shù)能夠獲取連續(xù)動(dòng)態(tài)的血壓參數(shù),有效彌補(bǔ)傳統(tǒng)袖帶血壓測(cè)量不便、間斷測(cè)量等不足。本文對(duì)基于光電容積脈搏波的無(wú)袖帶血壓測(cè)量技術(shù)的研究進(jìn)展進(jìn)行綜述。首先從傳感測(cè)量和數(shù)據(jù)處理方面介紹了光電容積脈搏波信號(hào)的獲取與分析方法。然后簡(jiǎn)述了傳統(tǒng)的基于脈搏波速度理論進(jìn)行血壓測(cè)量的研究,重點(diǎn)分析了該領(lǐng)域的主要研究方向:基于形態(tài)學(xué)參數(shù)的機(jī)器學(xué)習(xí)方法研究以及基于序列學(xué)習(xí)的深度網(wǎng)絡(luò)研究。最后對(duì)基于光電容積脈搏波的無(wú)袖帶血壓測(cè)量技術(shù)所面臨的挑戰(zhàn)及其應(yīng)對(duì)策略進(jìn)行了深入分析和詳細(xì)討論,以期為該領(lǐng)域的相關(guān)研究提供參考。

Cuffless blood pressure monitoring technology has a broad application prospect in health monitoring due to its low physiological/psychological load and other characteristics. The photoplethysmography-based cuffless blood pressure measurement technology can obtain continuous dynamic blood pressure parameters and effectively compensate for the inconvenience and intermittent measurement of traditional cuffless blood pressure measurement. This paper reviews the research progress of the photoplethysmography-based cuffless blood pressure measurement technology. Firstly, acquiring and analyzing the photoplethysmography signal is introduced in terms of sensing measurement and data processing. Then the traditional research on blood pressure measurement based on pulse wave velocity theory is briefly described. The main research directions in this field are highlighted: research on machine learning methods based on morphological parameters and research on deep networks based on sequence learning. Finally, in-depth analysis and detailed discussion of the challenges faced by the photoplethysmography-based cuffless blood pressure measurement technology and its response strategies are presented to reference for related research in this field.

參考文獻(xiàn):

[1] Stevens SL, Wood S, Koshiaris C, et al. Blood pressure variability and cardiovascular disease: systematic review and meta-analysis[J]. BMJ, 2016, 354: i4098.
[2] Blanco PJ, Feijóo RA. A dimensionally-heterogeneous closed-loop model for the cardiovascular system and its applications[J]. Medical Engineering & Physics, 2013, 35(5): 652-667.
[3] Saugel B, Hoppe P, Nicklas JY, et al. Continuous noninvasive pulse wave analysis using finger cuff technologies for arterial blood pressure and cardiac output monitoring in perioperative and intensive care medicine: a systematic review and meta-analysis[J]. British Journal of Anaesthesia, 2020, 125(1): 25-37.
[4] Nachman D, Gepner Y, Goldstein N, et al. Comparing blood pressure measurements between a photoplethysmography-based and a standard cuff-based manometry device[J]. Scientific Reports, 2020, 10(1): 16116.
[5] Song K, Chung K, Chang J. Cuffless deep learning-based blood pressure estimation for smart wristwatches[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(7): 4292-4302.
[6] Li YH, Harfiya LN, Purwandari K, et al. Real-time cuffless continuous blood pressure estimation using deep learning model[J]. Sensors, 2020, 20(19): 5606.
[7] Hsu YC, Li YH, Chang CC, et al. Generalized deep neural network model for cuffless blood pressure estimation with photoplethysmogram signal only[J]. Sensors, 2020, 20(19): 5668.
[8] EI-Hajj C, Kyriacou PA. Deep learning models for cuffless blood pressure monitoring from PPG signals using attention mechanism[J]. Biomedical Signal Processing and Control, 2021, 65: 102301.
[9] Lee D, Kwon H, Son D, et al. Beat-to-beat continuous blood pressure estimation using bidirectional long short-term memory network[J]. Sensors, 2021, 21(1): 96.
[10] Eom H, Lee D, Han S, et al. End-to-end deep learning architecture for continuous blood pressure estimation using attention mechanism[J]. Sensors, 2020, 20(8): 2338.
[11] Panwar M, Gautam A, Biswas D, et al. PP-Net: a deep learning framework for PPG-based blood pressure and heart rate estimation[J]. IEEE Sensors Journal, 2020, 20(17): 10000-10011.
[12] Athaya T, Choi S. An estimation method of continuous non-invasive arterial blood pressure waveform using photoplethysmography: a U-Net architecture-based approach[J]. Sensors, 2021, 21(5): 1867.
[13] Aguirre N, Grall-Ma?s E, Cymberknop LJ, et al. Blood pressure morphology assessment from photoplethysmogram and demographic information using deep learning with attention mechanism[J]. Sensors, 2021, 21(6): 2167.
[14] Westenberg JJM, van Poelgeest EP, Steendijk P, et al. Bramwell-Hill modeling for local aortic pulse wave velocity estimation: a validation study with velocity-encoded cardiovascular magnetic resonance and invasive pressure assessment[J]. Journal of Cardiovascular Magnetic Resonance, 2012, 14: 2.
[15] Suzuki S, Oguri K. Cuffless blood pressure estimation by error-correcting output coding method based on an aggregation of AdaBoost with a photoplethysmograph sensor[J]. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009: 6765-6768.
[16] Kurylyak Y, Lamonaca F, Grimaldi D. A neural network-based method for continuous blood pressure estimation from a PPG signal[C]// 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Minneapolis, MN, USA: IEEE, 2013: 280-283.
[17] Duan K, Qian Z, Atef M, et al. A feature exploration methodology for learning based cuffless blood pressure measurement using photoplethysmography[C]// 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando, FL, USA: IEEE, 2016: 6385-6388.
[18] Kachuee M, Kiani MM, Mohammadzade H, et al. Cuffless blood pressure estimation algorithms for continuous health-care monitoring[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(4): 859-869.
[19] Miao F, Fu N, Zhang Y, et al. A novel continuous blood pressure estimation approach based on data mining techniques[J]. IEEE Journal of Biomedical and Health Informatics, 2017, 21(6): 1730-1740.
[20] Khalid SG, Zhang J, Chen F, et al. Blood pressure estimation using photoplethysmography only: comparison between different machine learning approaches[J]. Journal of Healthcare Engineering, 2018, 2018: 1548647.
[21] Priyanka KNG, Chao PC, Tu T, et al. Estimating blood pressure via artificial neural networks based on measured photoplethysmography waveforms[C]// 2018 IEEE Sensors. New Delhi, India: IEEE, 2018: 1-4.
[22] Wang L, Zhou W, Xing Y, et al. A novel neural network model for blood pressure estimation using photoplethesmography without electrocardiogram[J]. Journal of Healthcare Engineering, 2018, 2018: 7804243.
[23] Mousavi SS, Firouzmand M, Charmi M, et al. Blood pressure estimation from appropriate and inappropriate PPG signals using A whole-based method[J]. Biomedical Signal Processing and Control, 2019, 47: 196-206.
[24] Khalid SG, Liu H, Zia T, et al. Cuffless blood pressure estimation using single channel photoplethysmography: a two-step method[J]. IEEE Access, 2020, 8: 58146-58154.
[25] Zhang Y, Feng Z. A SVM method for continuous blood pressure estimation from a PPG signal[C]// Proceedings of the 9th International Conference on Machine Learning and Computing. Raleigh, North Carolina, USA: EDM 2016, 2017: 128–132.
[26] Liu M, Po LM, Fu H. Cuffless blood pressure estimation based on photoplethysmography signal and its second derivative[J]. International Journal of Computer Theory and Engineering, 2017, 9(3): 202-206.
[27] Su P, Ding X, Zhang Y, et al. Long-term blood pressure prediction with deep recurrent neural networks[C]// 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). ?Las Vegas, NV, USA: IEEE, 2018: 323-328.
[28] Lin W-H, Wang H, Samuel OW, et al. New photoplethysmogram indicators for improving cuffless and continuous blood pressure estimation accuracy[J]. Physiological Measurement, 2018, 39(2): 025005.
[29] Slapni?ar G, Lu?trek M, Marinko M. Continuous blood pressure estimation from PPG signal[J]. Informatica, 2018, 42(1): 33-42.
[30] Ertu?rul ?F, Sezgin N. A noninvasive time-frequency-based approach to estimate cuffless arterial blood pressure[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2018, 26(5): 2260-2274.
[31] Chowdhury MH, Shuzan MN, Chowdhury MEH, et al. Estimating blood pressure from the photoplethysmogram signal and demographic features using machine learning techniques[J]. Sensors, 2020, 20(11): 3127.
[32] Saeed M, Villarroel M, Reisner AT, et al. Multiparameter Intelligent Monitoring in Intensive Care II: a public-access intensive care unit database[J]. Critical Care Medicine, 2011, 39(5): 952-960.
[33] Liu D, G?rges M, Jenkins SA. University of Queensland vital signs dataset: development of an accessible repository of anesthesia patient monitoring data for research[J]. Anesthesia and Analgesia, 2012, 114(3): 584-589.
[34] White WB, Berson AS, Robbins C, et al. National standard for measurement of resting and ambulatory blood pressures with automated sphygmomanometers[J]. Hypertension, 1993, 21(4): 504-509.
[35] Shimazaki S, Kawanaka H, Ishikawa H, et al. Cuffless blood pressure estimation from only the waveform of photoplethysmography using CNN[C]// 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin, Germany: IEEE, 2019: 5042-5045.
[36] Slapni?ar G, Mlakar N, Lu?trek M. Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network[J]. Sensors, 2019, 19(15): 3420.
[37] Yan C, Li Z, Zhao W, et al. Novel deep convolutional neural network for cuff-less blood pressure measurement using ECG and PPG signals[C]// 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin, Germany: IEEE, 2019: 1917-1920.
[38] Baek S, Jang J, Yoon S. End-to-end blood pressure prediction via fully convolutional networks[J]. IEEE Access, 2019, 7: 185458-185468.
[39] Shimazaki S, Bhuiyan S, Kawanaka H, et al. Features Extraction for Cuffless Blood Pressure Estimation by Autoencoder from Photoplethysmography[C]// 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). ?Honolulu, HI, USA: IEEE Press, 2018: 2857-2860.
[40] Landry C, Peterson SD, Arami A. Nonlinear Dynamic Modeling of Blood Pressure Waveform: Towards an Accurate Cuffless Monitoring System[J]. IEEE Sensors Journal, 2020, 20(10): 5368-5378.
[41] Tanveer MS, Hasan MK. Cuffless blood pressure estimation from electrocardiogram and photoplethysmogram using waveform based ANN-LSTM network[J]. Biomedical Signal Processing and Control, 2019, 51: 382-392.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]