51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
下肢運動想象腦機接口的研究進展及康復應用

Research progress and rehabilitation application of brain-computer interface based on lower-limb motor imagery

作者: 王維振  曲皓  雷楊浩  尹帥  王晶 
單位:西安交通大學機械工程學院機器人與智能系統(tǒng)研究所(西安 710049)<br />西安交通大學NRR-神經康復機器人研究院(西安 710049)<br />通信作者:王晶。E-mail: [email protected] <p>&nbsp;</p>
關鍵詞: 下肢;運動想象;腦機接口;功能康復 
分類號:R318.04
出版年·卷·期(頁碼):2023·42·2(204-211)
摘要:

運動想象腦機接口(brain computer interface based on motor imagery, MI-BCI)是一種完全不依賴于外周神經和肌肉就可實現(xiàn)與外界環(huán)境交互的前沿技術,該技術能夠充分利用患者的運動意圖,并觸發(fā)大腦的神經可塑性,以實現(xiàn)腦卒中患者的運動功能康復。針對下肢MI-BCI系統(tǒng)識別率低、實驗環(huán)境要求高等問題,研究人員從范式、算法和應用等方面不斷地探索下肢MI-BCI技術的新方向,并通過長期的臨床研究驗證了下肢MI-BCI技術在腦卒中患者下肢功能康復領域的優(yōu)越性。本文對近年來下肢MI-BCI的國內外研究進展進行綜述,歸納下肢MI-BCI在臨床康復領域的應用現(xiàn)狀,最后分析其面臨的挑戰(zhàn)和發(fā)展趨勢,以期推動下肢MI-BCI的快速發(fā)展,并為下肢功能康復提供新思路。

Brain computer interface based on motor imagery (MI-BCI) is a cutting-edge technology that can communicate with the external environment completely without relying on peripheral nerves and muscles, which can fully utilize the patient's motor intentions and trigger the neuro-plasticity of the brain to achieve function rehabilitation. In view of the low recognition rate and strict experimental environment of lower-limb MI-BCI, researchers explored the new direction of lower-limb MI-BCI from the aspects of paradigm, algorithm and application, and have verified the superiority of lower limb MI-BCI technology in the field of lower limb functional rehabilitation of stroke patients through long-term clinical trials. This paper reviewed the research progress and summarized the clinical application status of lower-limb MI-BCI. Finally, the challenges and development trends of lower-limb MI-BCI were analyzed to provide new ideas for lower limbs rehabilitation.

參考文獻:

[1] Katan M, Luft A. Global burden of stroke [J]. Seminars in Neurology, 2018, 38(2): 208-211.
[2] 常琪, 單新穎, 畢勝. 基于腦電圖的腦機接口在肢體康復中的應用進展 [J].中國康復醫(yī)學雜志, 2019, 34(12): 1488-1492.
[3] Mane R, Chouhan T, Guan CT. BCI for stroke rehabilitation: motor and beyond [J]. Journal of Neural Engineering, 2020, 17(4): 041001.
[4] Lebedev MA, Nicolelis MAL. Brain-machine interfaces: from basic science to neuroprostheses and neurorehabilitation [J]. Physiological Reviews, 2017, 97(2): 767-837.
[5] 王俊,廖麟榮,楊振輝, 等. 運動想象結合下肢康復機器人訓練對腦卒中患者步行障礙的影響[J]. 中國康復醫(yī)學雜志, 2015, 30(6): 542-546.
Wang J, Liao L, Yang Z, et al. Effects of robotic-assisted gait training with motor imagery on gait impairments in patients with stroke [J]. Chinese Journal of Rehabilitation Medicine, 2015, 30(6): 542-546.
[6] 方文垚, 劉昊, 楊柳, 等. 腦機接口技術在腦卒中偏癱患者下肢運動功能康復治療中的應用 [J].山東醫(yī)藥, 2018, 58(10): 66-68.
[7] 張瑞萍, 姜雪婷, 張楊, 等. 腦機接口康復機器人在腦卒中急性期患者下肢運動功能康復中的應用研究 [J].中國實用醫(yī)藥, 2021, 16(34): 196-198.
[8] Yuan Z, Peng Y, Wang L, et al. Effect of BCI-controlled pedaling training system with multiple modalities of feedback on motor and cognitive function rehabilitation of early subacute stroke patients [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 2569-2577.
[9] Takakusaki K. Functional neuroanatomy for posture and gait control [J]. Journal of Movement Disorders, 2017, 10(1): 1-17.
[10] 邵南平, 向春生, 唐嵐, 等. 基于AdaBoost BP神經網絡的無參考圖像質量評價的研究 [J].國外電子測量技術, 2017, 36(11): 108-113.
Shao NP, Xiang CS, Tang L, et al. Blind image quality assessment based on AdaBoost BP neural network [J].Foreign Electronic Measurement Technology, 2017, 36(11): 108-113.
[11] 李鵬海, 王麗余, 劉瀛濤, 等. 下肢運動想象和運動執(zhí)行的EEG節(jié)律特性研究 [J].儀器儀表學報, 2018, 39(3): 207-214.
Li P, Wang L, Liu Y, et al. Study on EEG rhythm features of lower Iimb motor imagery and motor performance [J].Chinese Journal of Scientific Instrument, 2018, 39(3): 207-214.
[12] Cassidy JM, Cramer SC. Spontaneous and therapeutic-induced mechanisms of functional recovery after stroke [J]. Translational Stroke Research, 2017, 8(1): 33-46.
[13] Keysers C, Perrett DI. Demystifying social cognition: a Hebbian perspective [J]. Trends in Cognitive Sciences, 2004, 8(11): 501-507.
[14] Kulasingham JP, Brodbeck C, Khan S, et al. Bilaterally reduced rolandic beta band activity in minor stroke patients [J]. Frontiers in Neurology, 2022, 13: 819603.?
[15] Barios J, Ezquerro S, Bertomeu-Motos A, et al. Movement-related EEG oscillations of contralesional hemisphere discloses compensation mechanisms of severely affected motor chronic stroke patients [J]. International Journal of Neural Systems, 2021, 31(12): 2150053.
[16] Flesher SN, Downey JE, Weiss JM, et al. A brain-computer interface that evokes tactile sensations improves robotic arm control [J]. Science, 2021, 372(6544): 831-836.
[17] Zhang JJQ, Fong KNK, Welage N, et al. The activation of the mirror neuron system during action observation and action execution with mirror visual feedback in stroke: a systematic review [J]. Neural Plasticity, 2018, 2018: 2321045.
[18] Li L, Wang J, Xu G, et al. The study of object-oriented motor imagery based on EEG suppression [J]. PLoS One, 2015, 10(12): e0144256.
[19] Yu Z, Li L, Song J, et al. The study of visual-auditory interactions on lower limb motor imagery [J]. Frontiers in Neuroscience, 2018, 12: 509.
[20] Ferrero L, Ortiz M, Quiles V, et al. Improving motor imagery of gait on a brain-computer interface by means of virtual reality: a case of study [J]. IEEE Access, 2021, 9: 49121-49130.
[21] Duan SC, Wang C, Li MY, et al. Haptic and visual enhance-based motor imagery BCI for rehabilitation lower-limb exoskeleton [M]// 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). Dali: IEEE Press, 2019: 2025-2030.
[22] Yu GJ, Wang JH, Chen WH, et al. EEG-based brain-controlled lower extremity exoskeleton rehabilitation robot [C]// 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), Ningbo: IEEE Press, 2017: 763-767.
[23] Choi J, Kim KT, Jeong JH, et al. Developing a motor imagery-based real-time asynchronous hybrid BCI controller for a lower-limb exoskeleton [J]. Sensors, 2020, 20(24): 7309.
[24] Ren SX, Wang WQ, Hou ZG, et al. Enhanced motor imagery based brain- computer interface via FES and VR for lower limbs [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(8): 1846-1855.
[25] Goodwin GM, McCloskey DI, Matthews PB. Proprioceptive illusions induced by muscle vibration: contribution by muscle-spindles to perception[J]. Science, 1972, 175(4028): 1382-1384.
[26] Tapin A, Duclos NC, Jamal K, et al. Perception of gait motion during multiple lower-limb vibrations in young healthy individuals: a pilot study [J]. Experimental Brain Research, 2021, 239(11): 3267-3276.
[27] Naito E. Sensing limb movements in the motor cortex: How humans sense limb movement [J]. Neuroscientist, 2004, 10(1): 73-82.
[28] Somadder R, Saha DK. Frequency domain CSP for foot motor imagery classification using SVM for BCI application [C]// 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES) . Langkawi Island, Malaysia: IEEE Press, 2021: 30-34.
[29] Gu L, Yu Z, Ma T, et al. Random matrix theory for analysing the brain functional network in lower limb motor imagery[C]// 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Montreal, QC, Canada: IEEE Press, 2020: 506-509.
[30] Gu LY, Yu ZH, Ma T, et al. EEG-based classification of lower limb motor imagery with brain network analysis [J]. Neuroscience, 2020, 436: 93-109.
[31] 李昭陽, 龔安民, 伏云發(fā). 基于EEG腦網絡下肢動作視覺想象識別研究 [J].南京大學學報(自然科學), 2020, 56(4): 570-580.
?Li Z, Gong AM, Fu YF. Identification of visual imagery of movements involving the lower limbs based on EEG network [J].Journal of Nanjing University (Natural Science), 2020, 56(4): 570-580.
[32] Xu MP, He F, Jung TP, et al. Current challenges for the practical application of electroencephalography-based brain-computer interfaces [J]. Engineering, 2021, 7(12): 1710-1712.
[33] Bhaduri S, Khasnobish A, Bose R, et al. Classification of lower limb motor imagery using K nearest neighbor and naive-bayesian classifier[C]// 2016 3rd IEEE International Conference on Recent Advances in Information Technology (RAIT). Dhanbad, India: IEEE Press, 2016: 499-504.
[34] Hsu WC, Lin LF, Chou CW, et al. EEG classification of imaginary lower limb stepping movements based on fuzzy support vector machine with kernel-induced membership function [J]. International Journal of Fuzzy Systems, 2017, 19(2): 566-579.
[35] 李嘉瑩, 趙麗, 邊琰, 等. 基于LDA和KNN的下肢運動想象腦電信號分類研究 [J].國外電子測量技術, 2021, 40(1): 9-14.
Li JY, Zhao L, Bian Y, et al. Classification of lower limb motor imagination signals based on LDA and KNN [J].Foreign Electronic Measurement Technology, 2021, 40(1): 9-14.
[36] Jeong JH, Kim DJ, Kim H, et al. Hybrid zero-training BCI based on convolutional neural network for lower-limb motor-imagery[C]// 2021 9th IEEE International Winter Conference on Brain-Computer Interface (BCI). Gangwon, Korea (South): IEEE Press, 2021: 1-4.
[37] Zhang X, Yao L, Wang X, et al. A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers [J]. Journal of Neural Engineering, 2021, 18: 031002.?
[38] Kumar VK, Chakrapani M, Kedambadi R. Motor imagery training on muscle strength and gait performance in ambulant stroke subjects-a randomized clinical trial [J]. Journal of Clinical and Diagnostic Research: JCDR, 2016, 10(3): YC01-YC04.
[39] 徐博然, 陳惠君. 步態(tài)運動想象療法對腦卒中偏癱患者步行功能的影響[J].解放軍護理雜志, 2019, 36(5): 16-20.
Xu BR, Chen HJ. Effect of gait imagery therapy on walking function in hemiplegic patients after stroke[J].Nursing Journal of Chinese People's Liberation Army, 2019, 36(5): 16-20.
[40] Yin XJ, Wang YJ, Ding XD, et al. Effects of motor imagery training on lower limb motor function of patients with chronic stroke: a pilot single-blind randomized controlled trial[J]. International Journal of Nursing Practice, 2022, 28(3): e12933.
[41] da Silva ST, Borges L, Santiago LMD, et al. Motor imagery for gait rehabilitation after stroke [J]. Stroke, 2021, 52(6): e272-e273.
[42] Bobrova EV, Reshetnikova VV, Frolov AA, et al. Use of imaginary lower limb movements to control brain–computer interface systems [J]. Neuroscience and Behavioral Physiology, 2020, 50(5): 585-592.

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]