51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
心臟瓣膜生物力學(xué)及相關(guān)建模方式的研究進(jìn)展

Research progress of heart valve biomechanics and related modeling methods

作者: 孟丑拴  洪洋  姜華  張賓 
單位:河北北方學(xué)院附屬第一醫(yī)院(河北張家口 075000)<br />通信作者:張賓。E-mail:[email protected]
關(guān)鍵詞: 心臟瓣膜;生物力學(xué);細(xì)胞外基質(zhì);心臟瓣膜性疾病;建模方式 
分類號(hào):R318.01
出版年·卷·期(頁(yè)碼):2023·42·2(212-216)
摘要:

心臟瓣膜生物力學(xué)是一個(gè)快速發(fā)展的、高度臨床相關(guān)的研究領(lǐng)域。研究表明大多數(shù)瓣膜病變是由于瓣膜生物力學(xué)改變導(dǎo)致的,因此了解心臟瓣膜與其局部力學(xué)環(huán)境之間的相互作用對(duì)于了解正常瓣膜功能和闡明瓣膜疾病進(jìn)展至關(guān)重要。然而研究這些病變的技術(shù)在很大程度上受到了限制,其中缺乏良好的瓣膜力學(xué)相互作用模型是限制該領(lǐng)域研究深入開(kāi)展的主要瓶頸之一。隨著數(shù)值計(jì)算模型、體外模型和動(dòng)物模型建模技術(shù)的飛速發(fā)展,心臟瓣膜相關(guān)的生物力學(xué)和介入治療研究取得了重大進(jìn)展。本文對(duì)心臟瓣膜的生物學(xué)和生物力學(xué)及相關(guān)模型進(jìn)行綜述,旨在使用跨學(xué)科方法加強(qiáng)臨床心血管醫(yī)生對(duì)心臟瓣膜疾病的理解。

Heart valve biomechanics is a rapidly developing and highly clinically relevant field of research. Studies have shown that most valve disease is due to altered valve biomechanics, and understanding the interaction between the heart valve and its local mechanical environment is critical for understanding normal valve function and elucidating disease progression. However, the techniques for studying these lesions are largely limited, and the lack of good valve mechanical interaction models is one of the main bottlenecks restricting the in-depth research in this field. With the rapid development of numerical calculation model, in vitro model and animal model modeling technology, significant progress has been made in biomechanics and interventional therapy research related to heart valves. This article reviews the biology and biomechanics of heart valves and related models with the aim of enhancing clinical cardiologists' understanding of heart valve disease using an interdisciplinary approach.

參考文獻(xiàn):

[1]馬娜,曾培,荊騰,等.心臟瓣膜雙軸力學(xué)特性測(cè)試系統(tǒng)的設(shè)計(jì)[J].北京生物醫(yī)學(xué)工程, 2018, 37(1): 79-85.
Ma N, Zeng P, Jing T, et al. Design of mechanical properties test system for the heart valve biaxial[J]. Beijing Biomedical Engineering, 2018, 37(1): 79-85.
[2]劉麗,萬(wàn)辰杰,柯林楠,等. 經(jīng)導(dǎo)管瓣膜瓣中瓣模式下流體力學(xué)性能體外測(cè)試及評(píng)價(jià)[J]. 北京生物醫(yī)學(xué)工程,2021,40(4): 393-399.?
Liu L, Wan CJ, Ke LN, et al. Hydrodynamic performance testing and evaluation of the transcatheter heart valve in valve-in-valve model[J]. Beijing Biomedical Engineering, 2021,40(4): 393-399.
[3]Hinton RB Jr, Lincoln J, Deutsch GH, et al. Extracellular matrix remodeling and organization in developing and diseased aortic valves[J]. Circulation Research, 2006,98(11): 1431-1438.
[4]Schoen FJ, Gotlieb AI. Heart valve health, disease, replacement, and repair: a 25-year cardiovascular pathology perspective[J]. Cardiovascular Pathology, 2016, 25(4): 341-352.
[5]Hinton RB, Yutzey KE. Heart valve structure and function in development and disease[J]. Annual Review of Physiology, 2011, 73: 29-46.
[6]Horne TE, VandeKopple M, Sauls K, et al. Dynamic heterogeneity of the heart valve interstitial cell population in mitral valve health and disease[J]. Journal of Cardiovascular Development and Disease, 2015, 2(3): 214-232.
[7]Anstine LJ, Bobba C, Ghadiali S, et al. Growth and maturation of heart valves leads to changes in endothelial cell distribution, impaired function, decreased metabolism and reduced cell proliferation[J]. Journal of Molecular And Cellular Cardiology, 2016,100: 72-82.
[8]Dutta P, Lincoln J. Calcific aortic valve disease: a developmental biology perspective[J]. Current Cardiology Reports, 2018, 20: 21.
[9]Aggarwal A, Pouch AM, Lai E, et al. In-vivo heterogeneous functional and residual strains in human aortic valve leaflets[J]. Journal of Biomechanics, 2016, 49(12): 2481-2490.
[10]Blum KM, Drews JD, Breuer CK. Tissue-engineered heart valves: a call for mechanistic studies[J]. Tissue Engineering Part B: Reviews, 2018, 24(3): 240-253.?
[11]Zhang BL, Bianco RW, Schoen FJ. Preclinical assessment of cardiac valve substitutes: Current status and considerations for engineered tissue heart valves[J]. Frontiers in Cardiovascular Medicine, 2019, 6: 72.
[12]Chester AH, Grande-Allen KJ. Which biological properties of heart valves are relevant to tissue engineering [J]. Frontiers in Cardiovascular Medicine, 2020, 7: 63.
[13]Fioretta ES, von Boehmer L, Motta SE, et al. Cardiovascular tissue engineering: from basic science to clinical application[J]. Experimental Gerontology, 2019, 117: 1-12.
[14]Del Alamo JC, Marsden AL, Lasheras JC. Recent advances in the application of computational mechanics to the diagnosis and treatment of cardiovascular disease[J]. Revista Espanola de Cardiologia, 2009, 62(7): 781-805.
[15]Caballero A, Mao W, McKay R, et al. New insights into mitral heart valve prolapse after chordae rupture through fluid-structure interaction computational modeling[J]. Scientific Reports, 2018, 8(1): 17306.
[16]Sacks M, Drach A, Lee CH,et al. On the simulation of mitral valve function in health, disease, and treatment[J]. Journal of Biomechanical Engineering, 2019, 141(7): 0708041–07080422.
[17]Siefert AW, Rabbah JP, Saikrishnan N, et al. Isolated effect of geometry on mitral valve function for in silico model development[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18(6): 618-627.
[18]Meijerink F, Wijdh-den Hamer IJ, Bouma W, et al. Intraoperative post-annuloplasty three-dimensional valve analysis does not predict recurrent ischemic mitral regurgitation[J]. Journal of Cardiothoracic Surgery, 2020,15(1): 161.
[19]Toma M, Einstein DR, Kohli K, et al. Effect of edge-to-edge mitral valve repair on chordal strain: Fluid-structure interaction simulations[J]. Biology (Basel), 2020, 9(7): 173.
[20]Midha PA, Raghav V, Sharma R, et al. The fluid mechanics of transcatheter heart valve leaflet thrombosis in the neosinus[J]. Circulation, 2017, 136(17): 1598-1609.
[21]Becsek B, Pietrasanta L, Obrist D. Turbulent systolic flow downstream of a bioprosthetic aortic valve: velocity spectra, wall shear stresses, and turbulent dissipation rates[J]. Frontiers in Physiology, 2020, 11: 577188.
[22]Noble C, Choe J, Uthamaraj S, et al. In silico performance of a recellularized tissue-engineered transcatheter aortic valve[J]. Journal of Biomechanical Engineering, 2019, 141(6): 61004-6100412.
[23]Ripley B, Kelil T, Cheezum MK, et al. 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement[J]. Journal of Cardiovascular Computed Tomography, 2016, 10(1): 28-36.
[24]Guzmán-Soto I, McTiernan C, Gonzalez-Gomez M, et al. Mimicking biofilm formation and development: recent progress in in vitro and in vivo biofilm models[J]. iScience, 2021, 24(5): 102443.
[25]Amini Khoiy K, Asgarian KT, Loth F, et al. Dilation of tricuspid valve annulus immediately after rupture of chordae tendineae in ex-vivo porcine hearts[J]. PLoS One, 2018, 13(11): e0206744.
[26]Midha PA, Raghav V, Condado JF, et al. Valve type, size, and deployment location affect hemodynamics in an in vitro valve-in-valve model[J]. JACC: Cardiovascular Interventions, 2016, 9(15): 1618-1628.
[27]Trusty PM, Bhat SS, Sadri V, et al. The role of flow stasis in transcatheter aortic valve leaflet thrombosis[J]. The Journal of Thoracic and Cardiovascular Surgery, 2022, 164(3): e105-e117.
[28]Sadri V, Madukauwa-David ID, Yoganathan AP. In vitro evaluation of a new aortic valved conduit[J]. The Journal of Thoracic and Cardiovascular Surgery, 2021, 161(2): 581-590.e6.
[29]Okafor I, Raghav V, Condado JF, et al. Aortic regurgitation generates a kinematic obstruction which hinders left ventricular filling[J]. Annals of Biomedical Engineering, 2017, 45(5): 1305-1314.
[30]Paulsen MJ, Imbrie-Moore AM, Wang H, et al. Mitral chordae tendineae force profile characterization using a posterior ventricular anchoring neochordal repair model for mitral regurgitation in a three-dimensional-printed ex vivo left heart simulator[J]. European Journal of Cardio-thoracic Surgery, 2020, 57(3): 535-544.
[31]Imbrie-Moore AM, Zhu Y, Park MH, et al. Artificial papillary muscle device for off-pump transapical mitral valve repair[J]. The Journal of Thoracic and Cardiovascular Surgery, 2022, 164(4): e133-e141.?
[32]Peirlinck M, Costabal FS, Yao J, et al. Precision medicine in human heart modeling : perspectives, challenges, and opportunities[J]. Biomechnics and Modeling in Mechanobiology, 2021, 20(3): 803-831.
[33]Onohara D, Corporan D, Hernandez-Merlo R, et al. Mitral regurgitation worsens cardiac remodeling in ischemic cardiomyopathy in an experimental model[J]. The Journal of Thoracic and Cardiovascular Surgery, 2020, 160(3): e107-e125.
[34]Xu D, McBride E, Kalra K, et al. Undersizing mitral annuloplasty alters left ventricular mechanics in a swine model of ischemic mitral regurgitation[J]. The Journal of Thoracic and Cardiovascular Surgery, 2022, 164(3): 850-861.e8.?
[35]Pierce EL, Bloodworth CH 4th, Imai A, et al. Mitral annuloplasty ring flexibility preferentially reduces posterior suture forces[J]. Journal of Biomechanics, 2018, 75: 58-66.
[36]Ncho BE, Pierce EL, Bloodworth CH 4th, et al. Optimized mitral annuloplasty ring design reduces loading in the posterior annulus[J]. The Journal of Thoracic and Cardiovascular Surgery, 2020, 159(5): 1766-1774.e2.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]