51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯系我們
基于交叉雙流特征融合配準網絡對阿爾茨海默病中大腦皮質及皮下核團的圖像分析

Image analysis of cortical and subcortical nuclei in Alzheimer disease based on intersected dual stream feature fusion registration network

作者: 李振宇,李恩慧,張童禹,張唯唯 
單位:中國醫(yī)學科學院基礎醫(yī)學研究所,北京協和醫(yī)學院基礎學院(北京 100005)
關鍵詞: MR腦圖像;微分同胚配準;注意力機制;阿爾茨海默病;腦解剖結構 
分類號:
出版年·卷·期(頁碼):2025·44·1(16-25)
摘要:

目的 提出一種基于交叉雙流的多尺度注意力特征融合網絡并命名為MAFF-Net,用于腦圖像微分同胚配準,以實現阿爾茨海默病相關的腦結構標簽的快速提取和分析。方法 首先利用交叉雙流網絡推斷圖像對之間的相互映射關系,并通過引入注意力機制融合多尺度特征信息,然后利用微分同胚配準增強形變場的連續(xù)性和全局平滑性提高配準質量。最后,在自采集、OASIS-AD與OASIS-Health數據集上進行腦圖像配準實驗,采用Dice相似性系數(Dice similarity coefficients, DSC)、召回率(Recall)、平均表面距離(average surface distance, ASD),以及雅克比行列式 (Jacobian determinant)驗證MAFF-Net模型的性能,并進一步分析OASIS數據集的腦結構標簽提取結果。 結果 腦圖像配準實驗結果顯示,MAFF-Net算法在三個測試集上DSC分別為0.832、0.853和0.865,負雅可比行列式體素比例分別為0.027%、0.192%和0.089%,Recall分別為0.924、0.909和0.920,ASD分別為0.447mm、0.387mm和0.345mm,除Recall外其余指標均優(yōu)于對比算法。OASIS數據集的腦結構標簽分析結果表明,大腦皮質、海馬體和杏仁核的體積和表面積與年齡和健康狀態(tài)存在密切聯系。 結論 本文提出的MAFF-Net模型可以獲得腦MR圖像精確的配準性能和標簽提取結果,通過AD相關的腦結構形態(tài)學特征分析,為AD早期診斷提供輔助參考價值。

Objective An attention-based multiscale feature fusion network with intersected dual stream was proposed, namely MAFF-Net, for diffeomorphic brain image registration, in order to achieve rapid extraction and analysis of Alzheimer's disease-related brain structure labels. Methods The intersected dual stream network was used to infer the mutual mapping relationship between image pairs, then the multiscale feature information was fused by introducing the attention mechanism, finally diffeomorphic registration was introduced to enhance the continuity and global smoothness of the deformation field and improve the registration quality. Brain image registration experiments were conducted on self-collected, OASIS-AD, and OASIS-Health datasets. The performance of the MAFF-Net model was validated using metrics by Dice similarity coefficient (DSC), recall, average surface distance (ASD), and the Jacobian determinant. Further analysis was performed on the brain structure label extraction results from the OASIS dataset. Results The experimental results of brain image registration show that the MAFF-Net algorithm has DSC values of 0.832, 0.853, and 0.865 on the three test sets, negative Jacobian determinant voxel ratios of 0.027%, 0.192%, and 0.089%, Recall values of 0.924, 0.909, and 0.920, ASD values of 0.447mm, 0.387mm, and 0.345mm, with all but Recall being superior to the comparison algorithm. The results of brain structural label analysis on the OASIS dataset show that the volume and surface area of the cerebral cortex, hippocampus, and amygdala are closely related to age and health status. Conclusion The MAFF-Net model proposed in this paper can obtain accurate registration performance and label extraction results of brain MR Images, and provide auxiliary reference value for the early diagnosis of AD through the analysis of morphological characteristics of AD related brain structures.

參考文獻:

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]