51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于圖卷積神經(jīng)網(wǎng)絡(luò)的精神分裂癥識別研究

Recognition of schizophrenia based on graph convolutional neural network

作者: 林萍,朱耿,李斌,周宇星,徐信毅,李曉歐 
單位:1上海理工大學(xué)健康科學(xué)與工程學(xué)院(上海 200093) 2上海健康醫(yī)學(xué)院醫(yī)療器械學(xué)院(上海 201318) 3上海市楊浦區(qū)精神衛(wèi)生中心(上海 200093)
關(guān)鍵詞: 腦功能連接;圖神經(jīng)網(wǎng)絡(luò);腦電圖;精神分裂癥 
分類號:
出版年·卷·期(頁碼):2025·44·1(26-31)
摘要:

目的 精神分裂癥(schizophrenia,SZ)患者存在工作記憶、信息處理、選擇性學(xué)習等方面的認知障礙,臨床上仍由醫(yī)生經(jīng)量表進行評估診斷。本文提出了一種不依賴人工特征的基于腦功能連接與圖卷積神經(jīng)網(wǎng)絡(luò)(graph convolution neural network, GCN)的精神分裂癥輔助診斷方法,實現(xiàn)對精神分裂癥的自動分類。方法 由于腦網(wǎng)絡(luò)圖與圖數(shù)據(jù)的天然相似性,本文從42例精神分裂癥患者和29例健康對照者(healthy control,HC)的強化學(xué)習任務(wù)中獲取事件相關(guān)電位(event-related potential, ERP),以電極為節(jié)點,使用相位滯后指數(shù)構(gòu)建功能連接矩陣,結(jié)合節(jié)點特征構(gòu)造腦網(wǎng)絡(luò)圖數(shù)據(jù),輸入圖卷積神經(jīng)網(wǎng)絡(luò)模型進行訓(xùn)練分類。結(jié)果 GCN模型下使用功率譜密度作為節(jié)點特征時SZ與HC的分類準確率、精確率、F1分數(shù)和特異性分別為84.21%、75%、85.71%、70%。與選擇原始腦電圖(electroencephalogram,EEG)向量作為節(jié)點特征相比準確率提高了6.43%。與使用隨機森林分類器相比,GCN模型提高了3.18%的準確率。結(jié)論 本文運用圖神經(jīng)網(wǎng)絡(luò)對腦電信號進行分類,實驗結(jié)果表明,GCN可以有效識別SZ患者,實現(xiàn)對SZ患者的自動分類。且圖結(jié)構(gòu)下節(jié)點特征的選擇相對于傳統(tǒng)機器學(xué)習模型對分類的準確率有顯著提升,且效果更優(yōu)。

Objective Patients with schizophrenia (SZ) suffer from cognitive deficits in working memory, information processing, and selective learning, which are still clinically diagnosed by doctors assessed by scales. In this paper, we propose an auxiliary diagnosis method for schizophrenia based on brain functional connectivity and graph convolution neural network (GCN) without relying on artificial features to realize the automatic classification of schizophrenia. Methods Due to the natural similarity between brain network graphs and graph data, in this paper, we obtained event-related potential (ERP) from a reinforcement learning task with 42 schizophrenia patients and 29 healthy controls (HC), constructed functional connectivity matrices using phase lag indices with electrodes as nodes, and constructed brain network graph data by combining node features, which were inputted into a graph convolutional neural network model for training classification. Results The classification accuracy, precision, F1 score and specificity of SZ and HC when using power spectral density as nodefeatures under the GCN model were 84.21%, 75%, 85.71% and 70%, respectively. The accuracy was improved by 6.43% compared to choosing the original electroencephalogram (EEG) vector as the node feature. The GCN model also improved the accuracy by 3.18% compared to using the random forest classifier. Conclusions In this paper, graph neural network is used to classify EEG signals, and the experimental results show that GCN can effectively recognize SZ patients and realize automatic classification of SZ patients. And the selection of node features under the graph structure has a significant improvement on the classification accuracy relative to the traditional machine learning model, and the effect is better.

參考文獻:

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]