51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于k最近鄰法的癲癇腦電信號研究

Study on epileptic EEG signals based on k-nearest neighbor algorithm

作者: 盧燦愛,姚文坡,乙萬義,白登選,王瓊,戴加飛,王俊 
單位:1 南京郵電大學(xué)地理與生物信息學(xué)院(南京 210023)2 南京郵電大學(xué)通信與信息工程學(xué)院(南京 210009)3 南京大學(xué)醫(yī)學(xué)院金陵醫(yī)院神經(jīng)內(nèi)科 (南京 210008)
關(guān)鍵詞: 癲癇腦電信號;序列符號化;互信息;k最近鄰算法;耦合關(guān)系 
分類號:
出版年·卷·期(頁碼):2025·44·1(55-60)
摘要:

目的 利用k最近鄰法(k-nearest neighbor,KNN)計算符號序列部分互信息對癲癇腦電信號間的耦合關(guān)系進(jìn)行分析,以期探究癲癇腦電信號與健康人的腦電信號耦合程度的差異,擬為癲癇腦電信號的研究提供借鑒方法。方法 傳統(tǒng)方法是通過計算變量間的概率分布密度求得部分互信息。本文是利用k最近鄰法計算部分互信息,該算法對數(shù)據(jù)的需求量要求不高,并且算法的精度和效率比較高。首先將原始腦電信號序列符號化,符號化的目的就是把序列轉(zhuǎn)變成符號序列,這可以有效降低噪聲的影響,然后對符號序列進(jìn)行編碼處理,最后再利用k最近鄰算法計算其部分互信息來獲得腦電信號的耦合關(guān)系。結(jié)果 對于傳統(tǒng)方法求部分互信息,在數(shù)據(jù)長度大于4 000時,在枕區(qū)O1、O2求出的p值滿足小于0.05。對于k最近鄰方法求部分互信息,在數(shù)據(jù)長度大于2 000時,在枕區(qū)O1、O2求出的p值滿足小于0.05。相對于傳統(tǒng)方法,k最近鄰法可以利用較短數(shù)據(jù)長度區(qū)分出實驗數(shù)據(jù)中的癲癇腦電信號和健康人的腦電信號。同時發(fā)現(xiàn)健康人的腦電信號耦合程度顯著高于癲癇患者。結(jié)論 k最近鄰法求解符號化部分互信息可以有效得分析癲癇腦電信號,并且算法的精度和效率比較高。

Objective The k-nearest neighbor algorithm is used to calculate the partial mutual information of symbol sequence to analyze the coupling relationship between epileptic EEG signals, to explore the difference in the coupling degree between epileptic EEG signals and healthy people's EEG signals, and to provide a reference method for the study of epileptic EEG signals. Methods The traditional method is to obtain partial mutual information by calculating the probability distribution density between variables. In this paper, the k-nearest neighbor method is used to calculate part of mutual information. The algorithm does not require much data, and the accuracy and efficiency of the algorithm are relatively high. First, the original epileptic EEG signal sequence is symbolized. The purpose of symbolization is to transform the sequence into a symbol sequence, which can effectively reduce the impact of noise. Then, the symbol sequence is coded. Finally, the k-nearest neighbor algorithm is used to calculate partial mutual information to obtain the coupling relationship of EEG signals. Results For traditional methods of obtaining partial mutual information, when the data length is greater than 4000, the p-values obtained in the pillow regions O1 and O2 are less than 0.05. For the k-nearest neighbor method to obtain partial mutual information, when the data length is greater than 2000, the p-values obtained in the pillow regions O1 and O2 are less than 0.05. Compared to traditional methods, the k-nearest neighbor method can distinguish between epileptic EEG signals and healthy EEG signals in experimental data using a shorter data length. At the same time, it was found that the coupling degree of EEG signals in healthy individuals was significantly higher than that in epilepsy patients.. Conclusions The k-nearest neighbor method can effectively analyze epileptic EEG signals. The accuracy and efficiency of the algorithm are relatively high.

參考文獻(xiàn):

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]