51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于Stacking集成學習的醫(yī)用直線加速器主要故障聯(lián)鎖預測模型研究

Research on prediction model for major fault interlock of medical linear accelerators based on stacking ensemble learning

作者: 李亮,何威震,沙冠辰,解昕,陳勇,章龍珍 
單位:1徐州醫(yī)科大學附屬醫(yī)院腫瘤放射治療科(江蘇徐州 221006)2深圳大學醫(yī)學部生物醫(yī)學工程學院(廣東深圳 518055)3天津大學精密儀器與光電子工程學院(天津 300110)
關鍵詞: 直線加速器;故障聯(lián)鎖預測;集成學習;長短期記憶網絡 
分類號:
出版年·卷·期(頁碼):2025·44·1(68-73)
摘要:

目的 研究基于Stacking集成學習模型應用于醫(yī)用直線加速器主要故障聯(lián)鎖預測的可行性。方法 回顧性收集119個月瓦里安23EX直線加速器頻次最多的4種故障聯(lián)鎖(代碼MLC、HWFA、GFIL與UDRS),并將加速器使用時間(月)、月治療人數(shù)、月射野數(shù)與月MU數(shù)考慮為故障聯(lián)鎖的影響因素。利用Stacking集成學習方法構造醫(yī)用直線加速器主要故障聯(lián)鎖預測模型,通過比較故障聯(lián)鎖頻次曲線與真實故障聯(lián)鎖頻次曲線的相似程度、均方根誤差、平均絕對值誤差和決定系數(shù),對各基模型和集成學習模型進行預測精度和預測性能評估。結果 相較于各基模型,集成學習模型的各故障聯(lián)鎖頻次曲線與真實故障聯(lián)鎖頻次曲線更為相似,集成學習模型的均方根誤差、平均絕對值誤差和決定系數(shù)在MLC聯(lián)鎖故障預測中分別為0.41,0.33和83.2%;在HWFA聯(lián)鎖故障預測中分別為0.19,0.17和74.2%;在GFIL聯(lián)鎖故障預測中分別為0.19,0.16和67.9%;在UDRS聯(lián)鎖故障預測中分別為0.20,0.17和71.5%。各指標結果均優(yōu)于單一的基模型。結論 基于Stacking集成學習模型能夠較為準確地對直線加速器主要故障聯(lián)鎖趨勢進行預測,對于加速器的預防性維護和故障維修管理具有一定的應用價值。

Objective To study the feasibility of applying the stacking ensemble learning model to the prediction of major fault interlocking of medical linear accelerators. Methods The four fault interlocks (codes:MLC, HWFA, GWIL and UDRS) with the highest frequency of Varian 23EX linear accelerator at 119 months were retrospectively collected, and the accelerator use time (months), monthly number of treatment, monthly number of shooting fields and monthly MU were considered as the influencing factors of fault interlocking. The Stacking ensemble learning method is used to construct the prediction model of the main fault interlocking of medical linear accelerators, and the prediction accuracy and prediction performance of each base model and the ensemble learning model are evaluated by comparing the similarity, root mean square error, mean absolute value error and coefficient of determination between the fault interlocking frequency curve and the real fault interlocking frequency curve. Results Compared with the base models, the fault interlocking frequency curves of the ensemble learning model are more similar to the real fault interlocking frequency curves, and the root mean square error, mean absolute value error and coefficient of determination of the ensemble learning model are 0.41, 0.33 and 83.2% in MLC interlock fault prediction, respectively. In the prediction of HWFA interlock faults, they were 0.19, 0.17 and 74.2%, respectively. In the GFIL interlock fault prediction, they were 0.19, 0.16 and 67.9%, respectively. In the UDRS interlock fault prediction, they are 0.20, 0.17 and 71.5%, respectively. The results of each indicator were better than the single base model. Conclusions Based on the Stacking ensemble learning model, the main fault interlocking trend of linear accelerator can be predicted more accurately, which has certain application value for preventive maintenance and fault repair management of accelerator.

參考文獻:

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]