51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
深度學(xué)習(xí)在乳腺腫瘤病理圖像分析中的應(yīng)用

Application of deep learning in pathological image analysis of breast tumors

作者: 李冠鵬,翟羽佳,張曉麗,張魁星,薛丹 
單位:山東中醫(yī)藥大學(xué)智能與信息工程學(xué)院(濟(jì)南 250355)
關(guān)鍵詞: 乳腺腫瘤;深度學(xué)習(xí);病理圖像;輔助診斷 
分類號(hào):
出版年·卷·期(頁(yè)碼):2025·44·1(81-89)
摘要:

乳腺癌作為女性最高發(fā)的惡性腫瘤之一,在全球范圍內(nèi)對(duì)女性健康構(gòu)成嚴(yán)重威脅。其精確的病理診斷不僅關(guān)系到患者的治療方案選擇,也直接影響到治療效果和患者生存質(zhì)量。隨著醫(yī)學(xué)影像技術(shù)的不斷進(jìn)步,數(shù)字病理圖像已逐漸成為臨床診斷的標(biāo)準(zhǔn)手段,由此也帶來(lái)對(duì)大量數(shù)據(jù)進(jìn)行處理和分析的挑戰(zhàn)。深度學(xué)習(xí),尤其是卷積神經(jīng)網(wǎng)絡(luò)(convolutional neural networks, CNN)在自動(dòng)化分析乳腺腫瘤病理圖像方面展現(xiàn)了顯著的優(yōu)勢(shì)和潛力,為提升診斷的精確度和效率開(kāi)辟了新的途徑。本綜述旨在系統(tǒng)性地探討深度學(xué)習(xí),特別是CNN在乳腺腫瘤病理圖像分類、檢測(cè)識(shí)別和分割等方面的最新研究進(jìn)展和應(yīng)用。本文深入分析了該領(lǐng)域當(dāng)前所面臨的技術(shù)挑戰(zhàn),如數(shù)據(jù)稀缺性、模型可解釋性以及模型泛化的問(wèn)題,并對(duì)這些問(wèn)題提出了可能的解決策略。最后,本文展望了未來(lái)的研究方向,特別關(guān)注于如何融合多模態(tài)數(shù)據(jù)、增強(qiáng)模型的魯棒性和解釋性等方面,以期為乳腺癌病理圖像分析領(lǐng)域的未來(lái)研究提供有益的參考和啟示。通過(guò)本綜述,希望能夠引起更多研究者的關(guān)注,推動(dòng)該領(lǐng)域的研究進(jìn)展,進(jìn)一步促進(jìn)深度學(xué)習(xí)技術(shù)在臨床實(shí)踐中的應(yīng)用,為乳腺癌的早期診斷以及預(yù)后預(yù)測(cè)提供更為精準(zhǔn)的決策依據(jù)。

As one of the most prevalent malignant tumours in women, breast cancer poses a serious threat to women's health worldwide. Its accurate pathological diagnosis not only relates to the choice of treatment plan for patients, but also directly affects the treatment effect and the quality of patients' survival. With the continuous progress of medical imaging technology, digital pathology images have gradually become the standard means of clinical diagnosis, which also brings the challenge of processing and analysing large amounts of data. Deep learning, especially convolutional neural networks (CNNs), has demonstrated significant advantages and potentials in automating the analysis of breast tumour pathology images, opening new avenues for improving the accuracy and efficiency of diagnosis. The aim of this review is to systematically explore the latest research advances and applications of deep learning, especially CNNs, in breast tumour pathology image classification, detection recognition and segmentation. This paper provides an in-depth analysis of the current technical challenges faced in this field, such as the problems of data scarcity, model interpretability, and model generalisation, and proposes possible solution strategies to these problems. Finally, this paper looks into future research directions, with special focus on how to fuse multimodal data, enhance model robustness and interpretability, with a view to providing useful references and insights for future research in the field of breast cancer pathology image analysis. Through this review, we hope to attract more researchers' attention, promote the research progress in this field, further promote the application of deep learning technology in clinical practice, and provide a more accurate decision basis for the early diagnosis of breast cancer as well as prognosis prediction.

參考文獻(xiàn):

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]