51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
面向BraTS數(shù)據(jù)集的腦腫瘤分割深度學(xué)習(xí)方法研究

Research on deep learning methods for brain tumor segmentation targeting the BraTS dataset

作者: 李學(xué)輝,魏國(guó)輝,贠愷,趙文華,馬志慶 
單位:山東中醫(yī)藥大學(xué)智能與信息工程學(xué)院(濟(jì)南 250355)
關(guān)鍵詞: 腦腫瘤分割;深度學(xué)習(xí);CNN;U-Net;Transformer 
分類(lèi)號(hào):
出版年·卷·期(頁(yè)碼):2025·44·1(96-103)
摘要:

腦腫瘤分割任務(wù)在醫(yī)學(xué)圖像分割領(lǐng)域備受關(guān)注,其復(fù)雜性和多樣性迫切需要研究學(xué)者采用高效的深度學(xué)習(xí)技術(shù)進(jìn)行精確處理。隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,各種針對(duì)腦腫瘤數(shù)據(jù)集(如brain tumor segmentation challenge,BraTS)的深度學(xué)習(xí)模型層出不窮。本文綜述了3種面向BraTS數(shù)據(jù)集的腦腫瘤分割深度學(xué)習(xí)方法的研究進(jìn)展。首先,本文詳細(xì)介紹了BraTS數(shù)據(jù)集的背景和來(lái)源,深入剖析該多模態(tài)數(shù)據(jù)集的結(jié)構(gòu)組成和各項(xiàng)性能評(píng)價(jià)指標(biāo),為后續(xù)深度模型分析提供理論基礎(chǔ);其次,針對(duì)3種不同的深度學(xué)習(xí)模型在BraTS數(shù)據(jù)集上的性能表現(xiàn)進(jìn)行詳細(xì)探討,包括卷積神經(jīng)網(wǎng)絡(luò)(convolutional neural network,CNN)、U型卷積網(wǎng)絡(luò)(U-Net convolutional networks,U-Net)和Transformer等網(wǎng)絡(luò)模型在腦腫瘤分割領(lǐng)域中對(duì)其基礎(chǔ)模型做出的優(yōu)化和改進(jìn),并對(duì)此類(lèi)模型在面臨數(shù)據(jù)集類(lèi)不平衡問(wèn)題和模型的建模、特征提取和特征融合等方面的挑戰(zhàn)時(shí)所采取的策略進(jìn)行深入分析;最后,本文總結(jié)了目前模型的研究趨勢(shì)并對(duì)Transformer模型的未來(lái)方向進(jìn)行展望,強(qiáng)調(diào)在模型性能提升的同時(shí),自監(jiān)督學(xué)習(xí)和輕量化的研究將會(huì)是未來(lái)研究的焦點(diǎn)。本文旨為初步涉足該領(lǐng)域的研究學(xué)者了解當(dāng)前研究現(xiàn)狀提供深入的理解和啟發(fā),為開(kāi)發(fā)更高性能、更具泛化能力的腦腫瘤分割方法提供參考。

The brain tumor segmentation task has attracted considerable attention in the realm of medical image segmentation, necessitating scholars to employ efficient deep learning techniques for precise handling given its inherent complexity and diversity. With the rapid advancement of deep learning technologies, a plethora of models tailored for the brain tumor segmentation challenge (BraTS) dataset has emerged. This paper presents a comprehensive review of three deep learning approaches for brain tumor segmentation, focusing on the BraTS dataset. Firstly, the paper meticulously introduces the background and origin of the BraTS dataset, thoroughly dissecting the structural composition and various performance evaluation metrics of this multimodal dataset. This provides a theoretical foundation for subsequent in-depth analyses of deep models. Secondly, the paper conducts an in-depth discussion regarding the performance of three distinct deep learning models on the BraTS dataset. This includes convolutional neural network (CNN), U-Net convolutional networks (U-Net), and Transformer models, elucidating the optimizations and enhancements made to their foundational models in the domain of brain tumor segmentation. The paper further delves into the strategies employed by these models to address challenges such as dataset class imbalance and issues related to modeling, feature extraction, and feature fusion. Lastly, the paper summarizes the current trends in model research and forecasts the future direction of Transformer models, emphasizing that, in addition to improving model performance, future research will focus on self-supervised learning and lightweight methodologies. The paper aims to provide an in-depth understanding and inspiration for researchers who are initially exploring this field, offering valuable insights for the development of higher-performing and more generalizable methods for brain tumor segmentation.

參考文獻(xiàn):

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]