寡聚蛋白質(zhì)相對(duì)于單體蛋白質(zhì)具有許多優(yōu)勢(shì),廣泛地參與多種生命活動(dòng)。本文提出次生特征提取方法, 使用支持向量機(jī)作為分類器, 采用“ 一對(duì)一”的多類分類策略, 基于蛋白質(zhì)一級(jí)序列提取特征方法,對(duì)四類同源寡聚體進(jìn)行分類研究。結(jié)果表明, 在Jackknife檢驗(yàn)下, 基于次生特征和氨基酸組成成分特征構(gòu)成的特征集, 加權(quán)情況下,其總分類精度最高達(dá)到了78.41%, 比氨基酸組成成分特征提高13.09%,比參考文獻(xiàn)最好特征集BG提高了6.86%,比最好原生特征集CM1提高了5.53%。此結(jié)果說明次生特征提取方法對(duì)于蛋白質(zhì)同源寡聚體分類是一種非常有效的特征提取方法。
|
[1]Chou KC. Molecular therapeutic target for type 2 diabetes. J Proteome Res, 2004, 3:1284-1288.
[2] Chou KC. Review: Structural bioinformatics and its impact to biomedical science. Cur Med Chem, 2004, 11: 2105-2134.
[3]Garian R. Prediction of quaternary structure from primary structure. Bioinformatics, 2001, 17: 551-556.
[4]Chou KC, Cai YD. Predicting protein quaternary structure by pseudo amino acid composition. Proteins: Structure,Function,Genetics,2003, 53: 282-289.
[5]張紹武, 潘泉, 陳潤生等. 基于支持向量機(jī)的蛋白質(zhì)同源寡聚體分類研究. 生物化學(xué)與生物物理進(jìn)展, 2003,30 (6):879-883.
[6]Zhang SW, Quan P, Zhang HC,et al. Support vector machines for predicting protein homooligomers by incorporating pseudoamino acid composition. Internet Electronic Journal of Molecular Design,2003,2(6):392-402.
[7]Zhang SW, Pan Q, Zhang HC,et al. Prediction Protein Homooligomer Types by Pesudo Amino Acid Composition: Approached with an Improved Feature Extraction and Naive Bayes Feature Fusion, Amino Acids, 2006, 30(4):461-468.
[8]張紹武,潘泉,趙春暉,等.基于加權(quán)自相關(guān)函數(shù)特征提取法的多類蛋白質(zhì)同源寡聚體分類研究. 生物醫(yī)學(xué)工程學(xué)雜志,2007, 24 (4) : 721-726.
[9]施建宇, 潘泉, 張紹武, 等. 基于氨基酸組成分布的蛋白質(zhì)同源寡聚體分類研究. 生物物理學(xué)報(bào), 2006,22 (1): 49-56.
[10]Li Qipeng, Zhang Shaowu, Pan Quan. Using multiscale glide zoom window feature extraction approach to predict protein homooligomer types. 3rd IAPR International Conference on Pattern Recognition in Bioinformatics, PRIB 2008, v 5265 LNBI: 78-86.
[11]Li Qipeng, Zhang Shaowu, Pan Quan. Prediction of protein homooligomer types with a novel approach of glide zoom window feature extraction. Advanced Intelligent Computing. Theories and Applications: With Aspects of Theoretical and Methodological Issues-4th International Conference on Intelligent Computing, ICIC 2008, Proceedings, v 5226 LNCS: 71-78.
[12]Chou P, Y. Amino acid composition of four classes of proteins. Abstracts of Papers, Part Ⅰ, Second Chemical Congress of the North American Continent. Las Vegas. 1980.
[13]Nishikawa K, Ooi T. Correlation of the amino acid composition of a protein to its structural and biological characters. J Biochem, 1982, 91: 1821-1824.
[14]Chou KC. Prediction of protein cellular attributes using pseudoamino acid composition. Proteins: Struct Funct Genet, 2001, 43:246-255.
[15]Matthews BW. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta, 1975, 405:442-451.
[16]Fasman GD. Handbook of Biochemistry and Molecular Biology. 3rd ed.Cleveland: ProteinsVolume1, CRC Press, 1976.
|