51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于無(wú)線傳感器技術(shù)的人體步態(tài)跟蹤系統(tǒng)研制

Human Gait Tracing System Based on Wireless Sensor Network

作者: 李聲飛  吳寶明 
單位:重慶大學(xué)通信工程學(xué)院(重慶400040)
關(guān)鍵詞: 加速度;步態(tài)跟蹤;無(wú)線傳感器網(wǎng)絡(luò);卡爾曼濾波算法;健康監(jiān)護(hù) 
分類號(hào):
出版年·卷·期(頁(yè)碼):2010·29·2(154-161)
摘要:

設(shè)計(jì)了一套基于無(wú)線傳感器網(wǎng)絡(luò)技術(shù)的人體步態(tài)跟蹤系統(tǒng)。首先在測(cè)試者腿部佩戴傳感器節(jié)點(diǎn)實(shí)時(shí)采集運(yùn)動(dòng)加速度數(shù)據(jù),通過(guò)傳感器網(wǎng)絡(luò)將數(shù)據(jù)發(fā)給PC機(jī)進(jìn)行數(shù)據(jù)處理。PC機(jī)上采用卡爾曼濾波算法估計(jì)腿部運(yùn)動(dòng)狀態(tài)向量(彎曲角度、擺動(dòng)速度、水平/垂直加速度),從而建立運(yùn)動(dòng)模型實(shí)時(shí)跟蹤人體步態(tài)運(yùn)動(dòng)。初步試驗(yàn)結(jié)果表明,系統(tǒng)能夠準(zhǔn)確地跟蹤人體運(yùn)動(dòng)步態(tài),具有準(zhǔn)確性高、使用方便、可擴(kuò)展性好和性價(jià)比高等優(yōu)點(diǎn),可廣泛應(yīng)用于人體運(yùn)動(dòng)功能康復(fù)評(píng)價(jià)等領(lǐng)域。

To design a human gait tracking system, which was based on wireless sensor technology. The acceleration sensor node wearing on the experimenter’s thigh, was responsible for collecting activity acceleration data, which then was transmitted the data to PC through wireless sensor network. By means of the pe software, the Kalman filter algorithm was adopted to estimate experimenter’s thigh motion vectors(bend angle, swing speed, horizontal/vertical acceleration), thus the motion model was established for tracing body gait activity. Preliminary experiments showed that this system was able to trace body gait accurately with the advantages of highaccuracy, convenience, good scalability and high performanceprice ration. Furthermore the system could be widely used in the application of evaluating movement function recovery.

參考文獻(xiàn):

[1]Saraph V, Zwick EB, Zwick G, et al. Multilevel surgery in spastic diplegia:evaluation by physical examination and gait analysis in 25 children[J]. J Pediatr Orthop, 2002,22(2): 112-115.
[2]Yu Ogura, Shumpei Ando, Hunok Lim,et al. Sensorybased walking motion instruction for biped humanoid robot[J]. Robotics and Autonomous Systems,2004,48(4):223-230.
[3]王人成, 馮麗爽, 黃昌華. 一種新型人體運(yùn)動(dòng)圖像實(shí)時(shí)分析系統(tǒng)[J ]. 中國(guó)康復(fù)醫(yī)學(xué)雜志,2002,15 (3):165-167.
[4]Lorincz Konrad, Malan DJ, FulfordJones TRF, et al. Sensor Network for Emergency Response: Challenges and Opportunities.Pervasive Computing,2004,50(3):16-23.
[5]http://www.vrealities.com/cyber.html.
[6]林金朝,李國(guó)軍,陳志勇. 可穿戴式生命體征監(jiān)護(hù)設(shè)備的研制[J]. 傳感技術(shù)學(xué)報(bào),2009,5(22):633-638.
[7]Ailisto Heikki, Lindholm Mikko. Identifying People from Gait Pattern with Accelerometers: Proceedings of SPIE[C]/Whit HJ.Biometric Technology for Human Identification. Bellingham:SPIE,2005:7-14.
[8]Kavanagh JJ, Barrett RS, Morrlson S. Upper body accelerations during walking in healthy young and elderly men[J]. Gait and Posture,2004,20(3):291-298.
[9]Koji Umemura1, Koki Tachikawa1, Yosuke Kurihara1, et al. Analysis of Human Walking by 3-D Acceleration Sensor and Its Aplication[J]. SICE Annual Conference,2008,20(27): 1723-1726.
[10]Arei Kobayashi, Takeshi Iwamoto, Satoshi Nishiyama. UME: Method for Estimating User Movement Using an Acceleration Sensor[J]. International Symposium On Applications and the Internet,2008,4(8):169-172.
[11]Bhanu B, Han J. Beyesianbased performance prediction for gait recognition[M]. Orlando,Florida:IEEE Workshop on Motion and Vedio Computing, 2002:145-150.
[12]Jani Mantyjarvi, Mikko Lindholm. Identifying users of portable devices form gait pattern with accelerometers. IEEE International Conference on Acoustics,Speech,and Signal Processing,2005,2:973-976.
[13]Greg Welch, Gary Bishop. An Introduction to the Kalman Filter[M]. Chapel Hill: University of North Carolina at Chapel Hill Department of Computer Science, 2001:7-34.
[14]Oberg T, Karsznia A, Oberg K. Joint angle parameters in gait: Reference data for normal   subjects[J]. Journal of Rehabilitation Research and Development,1994,31(3):199-213.
[15]曾凡林,鐘少龍,徐靜. MEMS加速度計(jì)信號(hào)光電檢測(cè)與電容檢測(cè)的噪聲分析[J]. 傳感技術(shù)學(xué)報(bào),2008,5(21):786-790.
[16]IEEE 802.15.4 2003:Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for LowRate Wireless Personal Area Networks[S].
[17]Cuttin J, Promtt D, Kozlowski L. A biomechanical invariant for gait perception[J]. Joumal of Experimental Psychology,1978,4(3):357-372.
[18]Begg RK, Palaniswami M, Owen B. Support Vector Machines for Automated Gait Classification. IEEE Trans on Biomedical Engineering,2005,52:828-838.
[19]何鵬舉,戴冠中. 嵌入式Web 網(wǎng)絡(luò)傳感器的實(shí)時(shí)數(shù)據(jù)采集方法[J ]. 傳感技術(shù)學(xué)報(bào), 2006, 19(6): 2743-2746.
[20]郭忠武,王廣志,丁輝. 正常青年人步態(tài)運(yùn)動(dòng)學(xué)參數(shù)的研究[J]. 中國(guó)康復(fù)理論與實(shí)踐, 2002,8(9):532-544.
[21]楊路明,桂彥,曾慶冬. 基于無(wú)標(biāo)記點(diǎn)題運(yùn)砌動(dòng)跟躒蹤嗣的步態(tài)參數(shù)提取[J]. 計(jì)算機(jī)應(yīng)用研究, 2008,25(6):1760-1764.

 

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]