51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
一種改進(jìn)局部二元擬合的灰度非均勻圖像分割

An Improved Local Binary Fitting Model For Non-Uniform Image Segmentation

作者: 田飛  楊豐 
單位:南方醫(yī)科大學(xué)生物醫(yī)學(xué)工程學(xué)院(廣州510515)
關(guān)鍵詞: 圖像分割;灰度非均勻;LBF模型;水平集 
分類號(hào):
出版年·卷·期(頁(yè)碼):2010·29·3(225-229)
摘要:

針對(duì)局部二元擬合(local binary fitting,LBF)能量模型對(duì)活動(dòng)輪廓曲線初始位置較為敏感的缺點(diǎn),本文提出一種改進(jìn)局部二元擬合的灰度非均勻圖像分割模型。首先把水平集函數(shù)初始化為一個(gè)常數(shù),然后在迭代過程中引入一個(gè)擾動(dòng)項(xiàng),從而引導(dǎo)目標(biāo)區(qū)域的水平集函數(shù)值發(fā)生符號(hào)變化。實(shí)驗(yàn)結(jié)果表明,上述模型能夠有效地應(yīng)用于灰度非均勻圖像的分割。與LBF模型相比,本文模型無(wú)需人工選擇活動(dòng)輪廓曲線的初始位置,且避免了由于初始位置選擇不當(dāng)造成的分割錯(cuò)誤。

In order to overcome the shortage of Local Binary Fitting model’s sensitivity to initial contour position, this paper develops an improved local binary fitting(LBF)model for non-uniform image segmentation. Firstly the level set function is initialized to a constant and then the disturbance term is introduced into the iteration, making the sign of function value in object area change from negative to positive. Experiments show that our proposed method is able to work effectively on segmentation of non-uniform images. Compared with LBF method, our improved LBF method does not need to artificially select the initial position of active contour curves and avoids the segmentation error caused by improper choice of initial contour position.

參考文獻(xiàn):

[1]Kass M, Witkin A, Terzopoulo D. Snakes: active contour models[J]. International Journal of Computer Vision, 1988,1(4): 321-331.
[2]Caselles V, Catte F, Coll T,  et al. A geometric model for active contours in image processing [J]. Numerische Mathematik,1993, 66(1): 1-31.
[3]Xu C, Prince J. Snakes, shapes, and gradient vector flow [J]. IEEE Trans Image Process, 1998,7(3):359-369.
[4]Ronfard R. Region-based strategies for active contour models [J]. International Journal of Computer Vision,1994, 13(2): 229-251.
[5]Chan T, Vese L. Active contours without edges[J]. IEEE Trans Image Process, 2001,10(2): 266-277.
[6]Tsai A, Yezzi A, Willsky AS. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification[J]. IEEE Trans Image Process, 2001,10(8): 1169-1186 .
[7]Vese L, Chan T. A multiphase level set framework for image segmentation using the Mumford and Shah model[J]. International Journal of Computer Vision, 2002, 50(3): 271-293.
[8]Li CM, Kao C, Gore  J, et al. Implicit active contours driven by local binary fitting energy[C]. Minneapolis, Minnesota, USA: IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2007:1-7.
[9]Li CM, Xu C, Gui C, et al. Level set evolution without re-initialization: A new variational formulation[C]. San Diego, CA, USA: IEEE Conference on Computer Vision and Pattern Recognition, 2005:430-436.
 

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]