[1]Mason SG,Birch GE.A general framework for brain-computer interface design [J].IEEE Transactions,Neural System and Rehabilitation Engineering,2003,11(1):70-85.
[2]徐寶國(guó),宋愛國(guó).單次運(yùn)動(dòng)想象腦電的特征提取和分類[J].東南大學(xué)學(xué)報(bào),2007,37(4):629-631.
[3]Penga ZK,Tse PW,Chu FL.A comparison study of improved Hilbert-Huang transform and wavelet transform:Application to fault diagnosis for rolling bearing[J].Mechanical Systems and Signal Processing,2005:974-988.
[4]Huang ML,Wu PD,Liu Ying,et al.Application and Contrast in Brain-Computer Interface between Hilbert-Huang Transform and Wavelet Transform[C].The 9th International Conference for Young Computer Scientists,2008:1706-1710.
[5]Bashashati A,Fatourechi M,Ward RK,et al.TOPICAL REVIEW:A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals[J].Journal of Neural Engineering,2007,4:R32- R57.
[6]Guyon I,Elisseeff A.An introduction to variable and feature selection[J].Journal of Machine Learning Research (S0885-6125),2003,3(1):1157-1182.
[7]Lotte F,Congedo M,Lecuyer A,et al.TOPICAL REVIEW:A review of classification algorithms for EEG-based brain-computer interfaces[J].Journal of Neural Engineering,2007,4:R1-R13.
[8]孫見青,汪榮貴,胡韋偉,等.一種新的基于NGA/PCA 和SVM 的特征提取方法[J].系統(tǒng)仿真學(xué)報(bào),2007,19(20):4823-4825.
[9]Benjamin Blankertz,Guido Dornhege,Matthias Krauledat,et al.The non-invasive Berlin Brain-Computer Interface:Fast acquisition of effective performance in untrained subjects.NeuroImage[J],2007,37:539-550.
[10]Huang NE,Zheng S,Long SR.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London,1998,454(A):903-995.
[11]Pfurtscheller G,Neuper C,Flotzinger D,et al.EEG based discrimination between imagination of right and left hand movement[J].Electroenceph Clin Neurophysiol,1997,103:642-651.
[12]Duda RO,Hart PE,Stock DG.Pattern Classification[M].北京:機(jī)械工業(yè)出版社,2003:94-96.
[13]張學(xué)工.關(guān)于統(tǒng)計(jì)學(xué)習(xí)理論與支持向量機(jī)[J].自動(dòng)化學(xué)報(bào),2000,26(1):33-34.
[14]謝松云,張海軍.基于SVM的腦功能分類與識(shí)別方法研究[J].中國(guó)醫(yī)學(xué)影像技術(shù),2007,23(1):125-128.
[15]李鋼,王蔚,張勝.支持向量機(jī)在腦電信號(hào)分類中的應(yīng)用[J].計(jì)算機(jī)應(yīng)用,2006,26(6):1432-1433.
|