51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁(yè) |  加入收藏
首頁(yè)首頁(yè) 期刊簡(jiǎn)介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于相對(duì)模糊連接度的聯(lián)合主動(dòng)輪廓模型及其在醫(yī)學(xué)圖像分割中的應(yīng)用

Relative Fuzzy Connectedness-based United Active Contours Model and its Applications in Medical Image Segmentation

作者: 賴凱  劉軍偉  范亞  黃煜峰  王興家  馮煥清 
單位:中國(guó)科學(xué)技術(shù)大學(xué)電子科學(xué)與技術(shù)系(合肥230027)
關(guān)鍵詞: 模糊連接度;主動(dòng)輪廓模型;水平集;醫(yī)學(xué)圖像;分割 
分類號(hào):
出版年·卷·期(頁(yè)碼):2010·29·6(581-586)
摘要:

針對(duì)醫(yī)學(xué)圖像背景復(fù)雜、邊界模糊、局部不均勻等特點(diǎn),提出了一種基于相對(duì)模糊連接度的聯(lián)合主動(dòng)輪廓模型,并將其應(yīng)用于醫(yī)學(xué)圖像分割。首先介紹主動(dòng)輪廓模型的曲線演化方程和模糊連接度的相關(guān)理論,然后將相對(duì)模糊連接度作為曲線演化驅(qū)動(dòng)力引入曲線演化方程,最后用實(shí)驗(yàn)證明該方法對(duì)多目標(biāo)醫(yī)學(xué)圖像和復(fù)雜醫(yī)學(xué)圖像的有效性。由于模糊連接度方法綜合了局部信息和全局信息,因此可以克服Li方法容易陷入局部最優(yōu)的問(wèn)題和Chan-Vese方法不能越過(guò)局部偽邊界的問(wèn)題,從而使聯(lián)合主動(dòng)輪廓模型的演化曲線最終收斂于全局最優(yōu)邊界。

In order to solve the difficulties of complex background, fuzzy boundary, and uneven local part in the segmentation of medical images, an united active contours model based on relative fuzzy connectedness was proposed. First, the curve evolution equation of the active contours model and the related theories of the fuzzy connectedness were introduced in detail. Then, the relative fuzzy connectedness was introduced into the curve evolution equation as the driving force. Finally, comparative experiments showed the efficacies of the proposed method for multi-object medical images and complex medical images. Because the fuzzy connectedness combined the local information and global information, the proposed method overcome the problems of Li method for falling into local optimum boundary and Chan-Vese method unable to cross the local pseudo-boundary, and then the curve of the united active contours converged to the global optimum boundary.

參考文獻(xiàn):

[1]林瑤,田捷.醫(yī)學(xué)圖像分割方法綜述[J].模式識(shí)別與人工智能,2002,15(2):192-204.
[2]Rosenfeld A.Fuzzy Digital Topology[J].Information and Control,1979,40:76-87.
[3]Udupa JK,Saha PK,Lotufo RA.Relative fuzzy connectedness and object definition: Theory, algorithm and applications in image segmentation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2002,24(11): 1485-1500.
[4]Pednekar A,Kakadiaris IA,Kurkure U.Adaptive fuzzy connectedness-based medical image segmentation[J].Proc Indian Conf. on Computer Vision, Graphics, and Image Processing,2003,24(11): 457-462.
[5]潘建江,楊勛年,汪國(guó)昭.基于模糊連接度的圖像分割及算法[J].軟件學(xué)報(bào),2005,16(1): 67-76.
[6]周永新,白凈.用于MRI腦組織分割的自動(dòng)模糊連接方法[J].中國(guó)生物醫(yī)學(xué)工程學(xué)報(bào),2006,25(4):411-416.
[7]林瑤,田捷.基于模糊連接度的FCM分割方法在醫(yī)學(xué)圖像分析中的應(yīng)用[J].中國(guó)體視學(xué)與圖像分析,2001,6(2):103-108.
[8]李彬,陳武凡.基于模糊連接度的多發(fā)性硬化癥MR圖像自動(dòng)分割算法[J].中國(guó)生物醫(yī)學(xué)工程學(xué)報(bào),2007,26(5):664-668.
[9]Kass M,Witkin A,Terzopoulos D.Snakes: Active contour models[J].International Journal of Computer Vision,1988,1(4):321-331.
[10]Li C,Xu C,Gui C,et al.Level set evolution without re-initialization: A new variational formulation[J].IEEE Conference on Computer Vision and Pattern Recognition,2005,1:430-436.
[11]Chan TF,Vese L.Active contours without edges[J].IEEE Transactions on Image Processing,2001,10(2):266-277.
[12] Zheng G,Wang HN,Li YL.A tree-like multiphase level set algorithm for image segmentation based on the Chan-Vese model[J].Acta Electronica Sinica,2006,34(8): 1508-1512.
 

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門(mén)外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]