[1]張涇周,張光磊, 戴冠中.自適應(yīng)算法與小波變換在心電信號(hào)濾波中的應(yīng)用[J].生物醫(yī)學(xué)工程學(xué)雜志, 2006, 23(5): 977-980.
[2]Clancy EA, Morin EL, Merletti R. Sampling, noise-reduction and amplitude estimation issues in surface electromyography[J]. Journal of Electromyography and Kinesiology, 2002, 12: 1-16.
[3]席旭剛, 加玉濤, 羅志增. 基于獨(dú)立成分分析的表面肌電信號(hào)工頻去噪[J].傳感器學(xué)報(bào), 2009, 22(5): 675-679.
[4]任小梅, 王志忠, 胡曉. 應(yīng)用小波變換和ICA方法的肌電信號(hào)分解[J]. 數(shù)據(jù)采集與處理, 2006, 21(3): 272-276.
[5]李強(qiáng). 表面肌電信號(hào)的運(yùn)動(dòng)單位檢測[D]. 合肥:中國科技大學(xué), 2008.
[6]季虎, 孫即祥, 毛玲. 基于小波變換與形態(tài)學(xué)運(yùn)算的ECG自適應(yīng)濾波算法[J]. 信號(hào)處理, 2006, 22(3): 333-337.
[7]Huang NE, Shen Z, Long SR. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]. Proceedings of the Royal Society of London, 1998, 454: 903-995.
[8]Boudraa AO, Cexus JC, Saidi Z. EMD-Based Signal Noise Reduction[J]. International Journal of signal processing, 2005, 1: 33-37.
[9]Andrade AO, Nasuto S, Kyberd P, et al. EMG signal filtering based on empirical mode decomposition[J]. Biomedical Signal Processing and Control,2006,1:44-55.
[10]Kopsinis Y, McLaughlin S. Empirical mode decomposition based denoising techniques[C]. IAPR Workshop: Cognitive Information Processing, 2008:42-47.
[11]毛玲, 孫即祥, 張國敏, 等. 基于形態(tài)濾波的心電信號(hào)基線矯正算法[J].信號(hào)處理, 2008, 24(4):582-585.
[12]中國科技大學(xué). 表面肌電圖系統(tǒng)及其電極板: 中國,PIDE090201[P]. 2009-03-23.
|