51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會(huì) 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于三級(jí)濾波器的表面肌電信號(hào)降噪處理

Surface Electromyography Denoising Method Based on Three-Level Filter

作者: 雷培源  楊基海  陳香 
單位:中國科學(xué)技術(shù)大學(xué)電子科學(xué)與技術(shù)系(合肥230027)
關(guān)鍵詞: 信號(hào)降噪;經(jīng)驗(yàn)?zāi)B(tài)分解;肌電分解 
分類號(hào):
出版年·卷·期(頁碼):2011·30·1(62-66)
摘要:

表面肌電信號(hào)(surface electromyography, sEMG)是一種非平穩(wěn)微弱信號(hào),而它的低信噪比是造成對(duì)其進(jìn)行分解十分困難的主要原因之一。本文針對(duì)sEMG信號(hào)的噪聲特點(diǎn),提出基于經(jīng)驗(yàn)?zāi)B(tài)分解(empirical mode decomposition, EMD)的三級(jí)濾波器技術(shù)來對(duì)sEMG信號(hào)進(jìn)行預(yù)處理,即采用頻譜插值法去除工頻干擾,采用形態(tài)學(xué)運(yùn)算去除基線漂移,采用經(jīng)驗(yàn)?zāi)B(tài)分解去除白噪聲。實(shí)驗(yàn)結(jié)果表明,本文所提出的方法不僅能夠提高sEMG信號(hào)的信噪比,也能有效地保留運(yùn)動(dòng)單位動(dòng)作電位(motor unit action potential, MUAP)的波形信息,這將有利于對(duì)MUAP的識(shí)別從而提高對(duì)sEMG信號(hào)的分解準(zhǔn)確率。

Surface electromyography (sEMG) is a non-stationary weak signal. It is very difficult to decompose sEMG signal, one of the main reasons is the sEMG signal with low signal-to-noise ratio(SNR). In this paper, a method, which is named three-level filtering technology based on empirical mode decomposition(EMD), is presented for sEMG signal preprocessing. Three filtering algorithms are adopted according to the noise characteristics of sEMG signal, including spectrum interpolation for the removal of interference from power line, morphological filter for the removal of baseline drift and empirical mode decomposition for the removal of white noise. The experimental results demonstrate that the proposed three-level filtering technology can not only improve the SNR of sEMG signal but also effectively reserve the main waveform features of MUAP. This will facilitate the identification of the MUAP and sequentially to improve the accuracy of sEMG signal decomposition.

參考文獻(xiàn):

[1]張涇周,張光磊, 戴冠中.自適應(yīng)算法與小波變換在心電信號(hào)濾波中的應(yīng)用[J].生物醫(yī)學(xué)工程學(xué)雜志, 2006, 23(5): 977-980.
[2]Clancy EA, Morin EL, Merletti R. Sampling, noise-reduction and amplitude estimation issues in surface electromyography[J]. Journal of Electromyography and Kinesiology, 2002, 12: 1-16.
[3]席旭剛, 加玉濤, 羅志增. 基于獨(dú)立成分分析的表面肌電信號(hào)工頻去噪[J].傳感器學(xué)報(bào), 2009, 22(5): 675-679.
[4]任小梅, 王志忠, 胡曉. 應(yīng)用小波變換和ICA方法的肌電信號(hào)分解[J]. 數(shù)據(jù)采集與處理, 2006, 21(3): 272-276.
[5]李強(qiáng). 表面肌電信號(hào)的運(yùn)動(dòng)單位檢測[D]. 合肥:中國科技大學(xué),  2008.
[6]季虎, 孫即祥, 毛玲. 基于小波變換與形態(tài)學(xué)運(yùn)算的ECG自適應(yīng)濾波算法[J]. 信號(hào)處理, 2006, 22(3): 333-337.
[7]Huang NE, Shen Z, Long SR. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]. Proceedings of the Royal Society of London, 1998, 454: 903-995.
[8]Boudraa AO, Cexus JC, Saidi Z. EMD-Based Signal Noise Reduction[J]. International Journal of signal processing, 2005, 1: 33-37.
[9]Andrade AO, Nasuto S, Kyberd P, et al. EMG signal filtering  based  on empirical mode decomposition[J]. Biomedical Signal Processing and Control,2006,1:44-55.
[10]Kopsinis Y, McLaughlin S. Empirical mode decomposition based denoising techniques[C]. IAPR Workshop: Cognitive Information Processing, 2008:42-47.
[11]毛玲, 孫即祥, 張國敏, 等. 基于形態(tài)濾波的心電信號(hào)基線矯正算法[J].信號(hào)處理, 2008, 24(4):582-585.
[12]中國科技大學(xué). 表面肌電圖系統(tǒng)及其電極板: 中國,PIDE090201[P]. 2009-03-23.
 

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請(qǐng)登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]