51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于EMD和Hilbert變換的自發(fā)腦電信號特征提取

EEG Feature Extraction Based on Empirical Mode Decomposition and Hilbert Transform in Brain Computer Interface

作者: 吳婷    顏國正    錢炳鋒 
單位:上海電機大學(xué)機械學(xué)院(上海200240)
關(guān)鍵詞: 腦機接口;腦電信號;經(jīng)典模態(tài)分解;希爾伯特變換;特征提取 
分類號:
出版年·卷·期(頁碼):2011·30·4(381-386)
摘要:

在腦機接口研究中,針對腦電信號的特征提取,提出一種基于EMD的Hilbert變換的方法。在變換過程中根據(jù)信號的局部特征自動選擇基函數(shù),求得信號在每個時間段的希爾波特譜;以時頻窗口內(nèi)的統(tǒng)計特性作為特征,利用Fisher距離選擇最佳特征集輸入分類器。最后利用BCI 2003競賽數(shù)據(jù),通過對特征矢量的可分性和識別精度兩個指標(biāo)的評估,表明了所提出方法的有效性。

In the study of brain computer interfaces,a method based on empirical mode decomposition(EMD) and Hilbert transformation was proposed. The method was used for the feature extraction of electroencephalogram. In this method,the basis function was selected automatically according to the local features of signal during the transforming process,the Hilbert spectrum was obtained in each period,and the statistical characteristics in time-frequency window were considered as features. Then the optimal feature sets were formed by the Fisher distance rule and put into the classification.  The performance of the eigenvector was evaluated by separability and recognition accuracy with the data set of BCI 2003 competition,and classification results proved the effectiveness of the proposed method.

參考文獻:

[1]Guger C,Neuper C,Walterspacher D,et al.Rapid prototyping of an EEG-based brain-computer interface (BCI)[J]. IEEE Trans Neural Syst Rehab Eng,2001,9(1):49-58.
[2]Lal TN,Schrder M,Hinterberger T, et al.Support vector channel selection in BCI[J]. IEEE Trans Neural Syst Rehab Eng,2004,5(6):1003-1010.
[3]Pfurtscheller G,Neuper C,Schlogl A,et al.Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters[J]. IEEE Trans Rehab Eng,1998,6(3):316-325.
[4]Millán J.Adaptive brain interfaces[J]. Commun ACM,2003,46:74-80.
[5]Millán J,Mourin~o J.Asynchronous BCI and local neural classifiers:An overview of the adaptive brain interface project[J]. IEEE Trans Neural Syst Rehab Eng,2003,11:159-161.
[6]Schroeder M,Bogdan M,Rosenstiel W,et al.Automated EEG feature selection for brain computer interfaces[C].Proc 1st int IEEE EMBS Conf Neural Eng,2003:626-629.
[7]Garrett D,Peterson DA,Anderson CW,et al.Comparison of linear,nonlinear,and feature election methods for EEG signal classification[J]. IEEE Trans Neural Syst Rehab Eng,2003,11(2):141-144.
[8]Srinivas M,Patnaik LM.Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms[J]. IEEE Trans on Sys Man and Cybe,1994,24(4):656-667.
[9]Wang HY.Nonstationary random signal analysis and processing[M]. Beijing:Defence Industry Press,1999.
[10]Mao KZ,Tan KC,SerW.Probabilistic neural-network structure determination for pattern classification[J]. IEEE Tran Neural Networks,2000,11(4):1010-1017.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]