51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于光學(xué)相干層析的視網(wǎng)膜圖像分割

Retinal Image Segmentation with Optical Coherence Tomography

作者: 江源源  周傳清  任秋實(shí) 
單位:上海交通大學(xué)激光與光子生物醫(yī)學(xué)研究所(上海200240)
關(guān)鍵詞: 光學(xué)相干層析;視網(wǎng)膜;層狀結(jié)構(gòu);圖像分割;Snake模型;貪婪算法 
分類號:
出版年·卷·期(頁碼):2011·30·5(452-456)
摘要:

With optical coherence tomography (OCT), doctors can obtain clear tomography
layer structures of retina.To automatically extract the contour of the retinal sub-layers
through image segmentation is a basic issue to the application of OCT in retinal diseases
diagnosis. A multi-step approach, which includes the filtering, peak detection, Snake
model, greedy algorithm and spline interpolation, was devised. Therefore, we realized the
automatic segmentation of retinal layers and quantitative measurement of the retinal
thickness. The method was successfully applied on a database of 24 images of normal people
’s eyes. The result, which the automated thickness measurements derived by this algorithm
was compared with thickness measurements from manually marked boundaries, indicated that
this method had a good agreement with manually marked method. In conclusion, the proposed
approach is promising for investigating for retinal variability studies.

利用光學(xué)相干層析(optical coherence tomography,OCT)技術(shù)可以得到清晰的視網(wǎng)膜層狀結(jié)構(gòu),實(shí)
現(xiàn)視網(wǎng)膜層狀結(jié)構(gòu)自動分割功能是解決OCT技術(shù)應(yīng)用于視網(wǎng)膜疾病診斷的一項(xiàng)基礎(chǔ)問題。本文通過圖像平
滑、峰值探測、Snake模型、貪婪算法和樣條插值等綜合技術(shù),對OCT視網(wǎng)膜圖像進(jìn)行分割,自動提取層
狀結(jié)構(gòu)輪廓并獲取視網(wǎng)膜厚度分布圖。將以上算法應(yīng)用于24例正常人眼底圖像, 并與專家手動標(biāo)記輪廓
提取的厚度相比,結(jié)果證實(shí)上述視網(wǎng)膜自動測量算法與專家人工標(biāo)記取得較好一致性。本文提出的測量
算法有望應(yīng)用于視網(wǎng)膜變異性評估。

參考文獻(xiàn):

[1]Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography [J]. Science, 1991,
254(5035):1178-1181.
[2]Greenfield DS, Bagga H, Knighton RW. Macular thickness changes in glaucomatous optic
neuropathy detected using optical coherence tomography [J]. Arch Ophthalmol, 2003, 121
(1): 41-46.
[3]Costa RA, Skaf M, Luiz AS M, et al. Retinal assessment using optical coherence
tomography [J]. Prog in Ret and Eye Rese, 2006, 25(3):325-353.
[4]Ishikawa H, Stein DM, Wollstein G, et al. Macular Segmentation with Optical Coherence
Tomography [J]. Invest Ophthalmol Vis Sci, 2005, 46(6):2012-2017.
[5]Bagci AM, Shahidi M, Ansari R, et al. Thickness Profile of Retinal Layers by Optical
Coherence Tomography Image Segmentation [J]. Am J Ophthalmol, 2008,146(5) :679-687.
[6]Rossant F, Ghorbel I, Bloch I, et al. Automated Segmentation of Retinal Layers in OCT
Imaging and Derived Ophthalmic Measures [R]. Proceedings of the Sixth IEEE international
conference on Symposium on Biomedical Imaging: From Nano to Macro, 2009: 1370-1373.
[7]Legarreta JE, Gregori G, Punjabi OS, et al. Macular thickness measurements in normal
eyes using spectral domain optical coherence tomography[J]. Oph Surg, Las & Imag, 2008,
39(4 Suppl): S43-49. 
[8]Baroni M, Fortunat P, Torre LA. Towards Quantitative Analysis of Retinal Features in
Optical Coherence Tomography [J]. Med Eng & Phys, 2007, 29(4): 432-441.
[9]Kass M, Witkin A, Terzopoulos D. Snakes: Active Contour Models [J]. Inter Jo of Comp
Vis, 1987, 1(4): 321-331.
[10]Williams DJ, Shah M. A fast algorithm for active contours and curvature estimation [
J]. CVGIP: Imag Underst, 1992, 55(1):14-26.
[11]Koozekanani D, Boyer K, Roberts C. Retinal thickness measurements from optical
coherence tomography using a markov boundary model [J]. IEEE transaction on medical
imaging, 2001,20( 9): 900-916.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點(diǎn)此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]