51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設(shè)為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于圖譜的肝臟CT三維自動分割研究

Atlas Based Automatic Liver 3D CT Image Segmentation

作者: 劉偉  賈富倉  胡慶茂  王俊 
單位:南京郵電大學(xué),圖像處理與圖像通信江蘇省重點實驗室(南京210003)
關(guān)鍵詞: 圖譜;肝臟;自動分割;配準(zhǔn) 
分類號:
出版年·卷·期(頁碼):2011·30·5(457-461)
摘要:

目的 在肝臟外科手術(shù)或肝臟病理研究中,計算肝臟體積是重要步驟。由于肝臟外形復(fù)雜、臨近組織灰度
值與之接近等特點,肝臟的自動醫(yī)學(xué)圖像分割仍是醫(yī)學(xué)圖像處理中的難點之一。方法 本文采用圖譜結(jié)合
3D非剛性配準(zhǔn)的方法,同時加入肝臟區(qū)域搜索算法,實現(xiàn)了魯棒性較高的肝臟自動分割程序。首先,利
用20套訓(xùn)練圖像創(chuàng)建圖譜,然后程序自動搜索肝臟區(qū)域,最后將圖譜與待分割CT圖像依次進行仿射配準(zhǔn)
和B樣條配準(zhǔn)。配準(zhǔn)以后的圖譜肝臟輪廓即可表示為目標(biāo)肝臟分割輪廓,進而計算出肝臟體積。結(jié)果 評
估結(jié)果顯示,上述方法在肝臟體積誤差方面表現(xiàn)出色,達到77分,但在局部(主要在肝臟尖端)出現(xiàn)較
大的誤差。結(jié)論 該方法分割臨床肝臟CT圖像具有可行性。

Objective Liver segmentation is an important step for the planning and
navigation in liver surgery.Accurate,fast and robust automatic segmentation methods for
clinical routine data are urgently needed.Because of the liver’s characteristics,such as
the complexity of the external form,the similarity between the intensities of the liver and
the tissues around it,automatic segmentation of the liver is one of the difficulties in
medical image processing.Methods In this paper,3D non-rigid registration from a refined
atlas to liver CT images is used for segmentation.Firstly,twenty sets of training images
are utilized to create an atlas.Then the liver initial region is searched and located
automatically.After that threshold filtering is used to enhance the robustness of
segmentation.Finally,this atlas is non-rigidly registered to the liver in CT images with
affine and B-spline in succession.The registered segmentation of liver’s atlas represented
the segmentation of the target liver,and then the liver volume was calculated.Results The
evaluation show that the proposed method works well in liver volume error,with the 77
score,yet appears greater error in local position (mostly in liver tips).Conclusions
Experimental results show that this method is feasible for clinical liver CT image
segmentation.

參考文獻:

[1]田捷,包尚聯(lián).醫(yī)學(xué)影像處理與分析[M].北京:電子工業(yè)出版社,2003.
[2]夏德深,傅德勝.現(xiàn)代圖像處理技術(shù)與應(yīng)用[M].第2版.南京:東南大學(xué)出版社,2001.
[3]Furukawa D,Shimizu A,Kobatake H.Automatic Liver Segmentation Method based on Maximum A
Posterior Probability Estimation and Level Set Method [C].The 10th International
Conference on Medical Image Computing and Computer Assisted Intervention,Brisbane,2007:117
-124.
[4]Rusko L,Bekes G,Nemeth G.Fully automatic liver segmentation for contrast-enhanced CT
images [C].The 10th International Conference on Medical Image Computing and Computer
Assisted Intervention,Brisbane,2007:143-150.
[5]Seghers D,Slagmolen P,Lambelin AY.Landmark based liver segmentation using local shape
and local intensity models [C].The 10th International Conference on Medical Image
Computing and Computer Assisted Intervention,Brisbane,2007:135-142.
[6]Kalinmueller D,Lange T,Lamecker H.Shape constrained automatic segmentation of the
liver based on a heuristic intensity model [C].The 10th International Conference on
Medical Image Computing and Computer Assisted Intervention,Brisbane,2007:109-116.
[7]Slagmolen P,Elen A,Seghers D.Atlas based liver segmentation using nonrigid
registration with a B-spline transformation model [C].The 10th International Conference
on Medical Image Computing and Computer Assisted Intervention,Brisbane,2007,197-206.
[8]Gerig G,Jomier M,Chakos HM.A new validation tool for assessing and improving 3D object
segmentation [J].Lecture Notes in Computer Science,2001,1(1):516-523.
[9]Niessen WJ,Bouma CJ.Error metrics for quantitative evaluation of medical image
segmentation [J].Performance Character-ization in Computer Vision,2000,1(1):275-284.
[10]Heimann T,Ginneken B,Styner MA,et al.Comparison and evaluation of methods for liver
segmentation from CT datasets [J].IEEE Transactions on Medical Imaging,2009,28(8):1251-
1265.

服務(wù)與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學(xué)工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]