51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于Curvelet變換的肺結(jié)節(jié)CT圖像良惡性分類研究

Classification of Malignant and Benign Pulmonary Nodules in CT Image Based on Curvelet Transformation

作者: 吳海豐  劉韞寧    孫濤    李霞    郭秀花    賀文 
單位:首都醫(yī)科大學公共衛(wèi)生與家庭醫(yī)學學院(北京100069)
關(guān)鍵詞: Curvelet變換;紋理特征;BP神經(jīng)網(wǎng)絡;受試者工作特征曲線   
分類號:
出版年·卷·期(頁碼):2011·30·5(471-473)
摘要:

目的 早期肺癌患者的CT圖像表現(xiàn)為結(jié)節(jié)狀(在肺野內(nèi)直徑≤3cm的病灶),需要與結(jié)核球等良性病
變鑒別開, 以提高患者的5年生存率。方法 本文基于Curvelet變換提取能量、熵、灰度均值及灰度標準
差四種紋理特征值,按7∶3比例將樣本分為訓練集與驗證集。使用BP(back propagation)神經(jīng)網(wǎng)絡作為
分類器。每一種紋理參數(shù)測試集的神經(jīng)網(wǎng)絡仿真值結(jié)合病理診斷結(jié)果繪制受試者工作特征曲線
(receiver operator characteristic curve, ROC曲線),根據(jù)ROC下面積得到最優(yōu)的幾種紋理參數(shù)用
于良惡性分類,并將分類結(jié)果與病理診斷結(jié)果進行比較。結(jié)果 四種紋理參數(shù)構(gòu)建的BP網(wǎng)絡均具有診斷價
值,每種紋理參數(shù)診斷價值各不相同,其中熵與灰度標準差的診斷價值優(yōu)于能量與灰度均值,并且通過
組合多種紋理參數(shù)可以提高診斷準確性。結(jié)論 使用熵與灰度標準差兩種紋理特征值構(gòu)建BP神經(jīng)網(wǎng)絡能達
到最好的分類效果,在一定程度上有利于肺癌的早期診斷。

Objective  To raise the 5-year survival rate,the CT detected pulmonary
nodules,which size is defined smaller than 30mm, is needed to be distinguished between
benign or malignantones. Methods Curvelet transformation was introduced in this paper and
four texture features, including energy, entropy, gray scale mean and gray scale
standardized deviation, were calculated. The samples were divided into 2 parts, 70% in test
set, and the 30% in validation set. A back propagation(BP) artificial neutral network was
used as the classifier. The testing set of each texture feature obtained a ROC (receiver
operator characteristic curve) by using its simulation result of the BP artificial neutral
network and pathological diagnosis. The optimal texture features were chosen to predict the
characteristic of small solitary pulmonary nodules in the CT images compared with other
texture features, it was more proper to use the entropy and standard deviation as
parameters to establish the prediction model. Results The BP artificial neutral network
established by parameters entropy and standard deviation provided the best discrimination
of the benign and the malignant small solitary pulmonary nodules. Conclusions  We can
profit from the diagnosis of early stage carcinoma of the lung to some extent with the BP
artificial neutral network, which utilizes the entropy and standard deviation as
parameters.

參考文獻:

[1]Jemal A, Siegel R, Xu J, et al. cancer statistics 2010[J/OL]. CA Cancer J Clin,
2010. doi: 10.3322/caac.20073.
[2]Kusumoto M, Tateishi U, Arai Y, et al. Diagnostic imaging of cancer on multislice CT[
J]. Cancer & Chemotherapy, 2005, 32(6): 759-764.
[3]Liu YN, Wang H, Guo  XH, et al  Application of artificial neural networks in
prediction model of early-stage lung cancer[J]. Chinese Journal of Medical
Statistics,2008, 1(1): 30-33.
[4]Candes EJ, Demanet L, Donoho DL, et al. Fast discrete curvelet transforms[R].Applied
and Computational Mathematics, California Institute of Technology, 2005: 1-43.
[5]Dettori L, Semler L. A comparison of wavelet, ridgelet, and curvelet-based texture
classification algorithms in computed tomography[J] . Computers in Biology and Medicine,
2009 (37): 486-498.
[6]Mohamed ME, Ibrahima F, Brahim BS. Breast cancer diagnosis in digital mammogram using
multiscale curvelet transform[J]. Computerized Medical Imaging and Graphics,2010, 34(4):
269-276.
[7]Mohamed ME, Ibrahima F, Brahim BS. A comparison of wavelet and curvelet for breast
cancer diagnosis in digital mammogram[J]. Computerized Medical Imaging and Graphics,
2010, 40(4): 384-391.
[8]Arivazhagan S, Ganesan L, Kumar TS. Texture classification using curvelet statistical
and co-occurrence feature. In Proceedings of the 18th International Conference on Pattern
Recognition (ICPR 2006), 2006, 2: 938-941.
[9]倪雪, 李慶武, 孟凡,等. Curvelet變換用于人臉特征提取與識別[J]. 應用科學學報, 2009,
27(1): 34-38.
[10]許學斌, 張德運, 張新曼,等. 采用離散曲波變換和支持向量機的掌紋識別方法[J].紅外與毫米
波學報, 2009, 28(6): 456-460.
[11]Ondimu S, Murase NH. Effect of probability-distance based Markovian texture
extraction on discrimination in biological imaging. Computers and Electronics in
Agriculture,2008, 63(1): 2-12. 
[12]Wang H,  Guo XH,  Jia ZW,et al Multilevel binomial logistic prediction model for
malignant pulmonary nodules based on texture features of CT image[J]. European Journal of
Radiology,2010, 74 (1): 124-129.

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]