[1]Romero S, Mananas MA, Barbanoj MJ. Ocular Reduction in EEG Signals Based on Adaptive
Filtering, Regression and Blind Source Separation [J]. Annals of Biomed Engin, 2009, 37
(1): 176-191.
[2]Congedo M, Pailler GC, Jutten. On the blind source separation of human
electroencephalogram by approximate joint diagonalization of second order statistics [J].
Clin Neurophy, 2008, 119(12): 2677-2686.
[3]Makarov VA, Castellanos NP. Recovering EEG brain signals: Artifact suppression with
wavelet enhanced independent component analysis [J]. Neuro Meth, 2006, 158(2): 300-312.
[4]Inuso G, La Foresta F, Mammone N, et al. Wavelet-ICA methodology for efficient
artifact removal from Electroencephalographic recordings [C]//International Joint
Conference on Neural Networks. Orlando: IEEE, 2007:1524-1529.
[5]Delorme A, Sejnowski T, Makeig S. Enhanced detection of artifacts in EEG data using
higher-order statistics and independent component analysis [J]. of Neurosci Meth, 2007,
34(4): 1443-1449.
[6]高莉, 黃力宇. 基于獨(dú)立分量分析的自適應(yīng)最大熵算法對腦電干擾的識別與剔除 [J]. 航天醫(yī)學(xué)
與醫(yī)學(xué)工程, 2008, 21(2): 142-146.
[7]Clercq WD, Vergult A, Vanrumste B, et al. Canonical correlation analysis applied to
remove muscle artifacts from the electroencephalogram [J]. IEEE Trans Biomed Eng, 2006,
53(12): 2583-2587.
[8]張莉, 何傳紅, 何為. 典型相關(guān)分析去除腦電信號中的眼電偽跡的研究 [J]. 計(jì)算機(jī)工程與應(yīng)用
, 2009, 45(31): 218-220.
[9]Siew-Cheok NG, Raveendran P. Enhanced u rhythm extraction using blind source
separation and wavelet transform [J]. IEEE Trans Biomed Eng, 2009, 56(8): 2024-2034.
[10]Romero S, Mananas MA, Barbanoj MJ. A comparative study of automatic techniques for
ocular artifact reduction in spontaneous EEG signals based on clinical target variables: A
simulation case [J]. Comp in Biolog and Med, 2008, 38(3): 348-360.
|