51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
基于肌動圖與肌電圖信號的假肢控制系統(tǒng)的研究

A Prosthesis Control System Based on Both of Mechanomyography and Electromyography

作者: 游淼    鄒國棟    林婉華    余龍 
單位:中南大學地球科學與信息物理工程學院(長沙410083)
關鍵詞: 肌動信號;肌電信號;模式識別;假肢控制 
分類號:
出版年·卷·期(頁碼):2011·30·6(574-577)
摘要:

目的 驗證使用肌動圖(mechanomyography,MMG)和肌電圖(electromyography,EMG)兩種信號共同作為假肢控制信號時,是否能提高假肢控制系統(tǒng)分類的準確度。方法 本文采用信號融合方法,通過融合6通道的MMG信號與2通道的EMG信號,以及基于模式識別的線性判別分析(linear discriminant analysis,LDA)算法,研制了基于MMG和EMG信號的假肢控制系統(tǒng)。結(jié)果 該系統(tǒng)能對采集到的信號進行處理并得出動作分類結(jié)果,然后控制假肢完成相應動作。對6位測試者的腕屈、腕伸、張開、握拳4類動作以及靜止狀態(tài)進行假肢控制的動作分類準確度實驗,準確度達94.6%,比單獨用MMG信號的精度88.5%或EMG信號精度90.4%效果更好。結(jié)論 基于MMG與EMG信號的假肢控制系統(tǒng)可以更好地實現(xiàn)假肢控制動作的有效分類,未來可應用于上臂截肢的殘疾人。

Objective To improve the accuracy of classification for a prosthesis control system by using of mechanomyography(MMG)and electromyography(EMG)as prosthesis control signals.Methods A prosthesis control system based on MMG and EMG was developed by using a signal fusion method.Six channels of MMG and two channels of EMG were fused,and combined with linear discriminant analysis(LDA)algorithm based on pattern recognition,which were applied for the test of the classification precision of prosthesis control system.Six volunteers were enrolled in the test including four kinds of activities and static status through this system.The precision reached to 94.6%,which is better than the accuracy when MMG signal(88.5%)or EMG signal(90.4%)was adopted solo.Conclusions The system based on both of MMG and EMG signals can classify the prosthesis controlling action efficiently,and control the prosthesis independently.This prosthesis control system is expected to be applied to the disabled upper arm amputated in the near future.

參考文獻:

[1]Barry DT.Acoustic signals from frog skeletal muscle[J].Biophys,1987,51:769-773.
[2]Orizio C.Muscle sound: Bases for the introduction of a mechanomyographic signal in muscle studies[J].Crit Rev Biomed Eng,1993,21:201-243.
[3]Stokes MJ. Acoustic myography: Applications and considerations in measuring muscle performance[J].Isokinetics and Exercise Science,1993,3:4-15.
[4]Barry DT,Leonard JA,Gitter AJ,et al.Acoustic myography as a control signal for an externally powered prosthesis[J].Arch Phys Med Rehabil,1986,67:267-269.
[5]Xie HB,Zheng YP,Guo JY.Classification of the mechanomyogram signal using a wavelet packet transform and singular value decomposition for multifunction prosthesis control[J].Physiological measurement,2009,30(5):441-457.
[6]Silva J,Heim W,Chau T.A self-contained,mechanomyography-driven externally powered prosthesis[J].Archives of physical medicine and rehabilitation,2005,86(10):2066-2070.
[7]Englehart K,Hudgins B,Parker PA,et al.Improving myoelectric signal classification using wavelet packets and principal components analysis[C].21st Annual International Conference of the IEEE Engineering in Medicine and Biology Society,1999.

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內(nèi)北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]