51黑料吃瓜在线观看,51黑料官网|51黑料捷克街头搭讪_51黑料入口最新视频

設為首頁 |  加入收藏
首頁首頁 期刊簡介 消息通知 編委會 電子期刊 投稿須知 廣告合作 聯(lián)系我們
乳腺腫瘤超聲圖像特征參數量化研究進展

Overview of Quantitative Analysis of Feature Parameters in Breast Tumor Ultrasound Images

作者: 高東平  劉慧  池慧 
單位:中國醫(yī)學科學院醫(yī)學信息研究所(北京 100020)
關鍵詞: 乳腺腫瘤;超聲圖像;量化分析 
分類號:
出版年·卷·期(頁碼):2011·30·6(656-660)
摘要:

乳腺腫瘤超聲圖像的特征量化分析對判別腫瘤的良、惡性具有重要價值。本文總結了良性和惡性乳腺腫瘤在超聲圖像上的特點,將乳腺良性腫瘤和惡性腫瘤鑒別特征在形狀、邊緣、邊界、朝向、回聲特點幾個方面的量化方法和量化參數進行了較為全面的梳理,并對量化特征與腫瘤良、惡性之間的關系進行了分析。

It is of great value for the quantitative analysis of feature parameters in breast tumor ultrasound images to distinguish the carcinoid and the malignancy. We summarized the features of the benign and malignant breast ultrasound images, analyzed the quantitative methods and quantitative parameters of shape features, boundary features, edge features, orientation and echo characteristics to identify benign or malignant breast tumors. Finally, we discussed the relationship between the quantitative characteristics and the benign or malignant breast tumors.

參考文獻:

[1]陽維.乳腺腫瘤的超聲圖像特征定量分析與良惡性識別[D].上海:上海交通大學,2009.
[2]Stavros AT. Sonographic evaluation of solid breast nodules [C]. Breast Cancer Res Symposium Mammographicum, 2004, 6(Suppl 1):3.
[3]Joo SY, Yang YS, Moon WK, et al. Computer—aided diagnosis of solid breast nodules use of an artificial neural network based on multiple sonographic features[J].Medical Imaging, 2004, 23(10): 1292-1300.
[4]彭玉蘭.乳腺高頻超聲圖譜[M].北京:人民衛(wèi)生出版社,2006:81-82.
[5]周永昌,郭萬學.超聲醫(yī)學[M].第4版.北京:科學技術文獻出版社,2003:395-410.
[6]Starvos AT, Thickman D, Rapp CL, et al. Solid breast nodules:use of sonography to distinguish between benign and malignant lesions[J].Radiology, 1995, 196(1): 123-134.
[7]Chou YH, Tiu CM, Hung GS, et al. Stepwise logistic regression analysis of tumor contour features for breast ultrasound diagnosis[J]. Ultrasound in Med & Bio, 2001, 27(11): 1303-1306.
[8]Radhika S. Texture analysis of lesions in breast ultrasound images[J], Comput Medi Imag and Grap, 2002, 26(5): 303-307.
[9]Wenjia K, Rueyfeng C, Moon WK. Computer-aided diagnosis of breast tumors with different US systems[J]. Academic Radiology, 2002, 9(7): 793-799.
[10]Darren C, Rueyfeng C, Wenjia K. Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks[J]. Ultrasound in Medicine &Biology, 2002, 28(10): 1301-1310.
[11]Chen SJ, Cheng KS, Dai YC, et al. Quantitatively characterizing the textural features of sonographic images for breast cancer with histopathologic correlation [J].Ultrasound Med, 2005, 24(5):651-661.
[12]林其忠.乳腺腫瘤超聲圖像的計算機輔助診斷方法研究[D].上海:復旦大學,2007.
[13]哈章.基于灰階超聲序列圖像的乳腺腫瘤計算機輔助診斷[D].合肥: 中國科學技術大學,2008.
[14]張晉熙,姜玉新.淺表器官組織超聲診斷學[M].北京:科學技術文獻出版社,2000:124.
[15]Castleman KR. 數字圖像處理[M].北京:電子工業(yè)出版社, 2004:412.
[16]林江莉,汪天富,彭玉蘭,等. 乳腺腫瘤超聲圖像形態(tài)特征選擇[J],四川師范大學學報:自然科學版,2005,28(5): 615-618.
[17]蔣玲,羅瑩,彭玉蘭,等. 超聲圖像特征參數分析在乳腺腫瘤鑒別診斷中的應用[J].中國組織工程研究與臨床康復,2010, 14(26): 4836-4840.
[18]Peura M, Iivarinen J. Efficiency of simple shape descriptors//Arcelli, et al. Advances in Visual Form Analysis[M]. Singapore: World Scientific, 1997: 443-451.
[19]Mudigonda NR, Rangayyan  RM, Desantels JEL.Gradient and texture analysis for the classification of mammographic masses[J].Medical Imaging, 2000, 19(10): 1032-1043.
[20]黃亞麗,李芬華,趙真. B超肝臟圖像紋理特征提取方法的實驗研究[J].中國醫(yī)學影像技術, 2004, 20(12):1937-1939.
[21]Shen WC, Chang RF, Moon WK, et al. Breast ultrasound computer-aided diagnosis using BI-RADS features[J]. Academic Radiology, 2007, 14(8): 928-939.

服務與反饋:
文章下載】【加入收藏
提示:您還未登錄,請登錄!點此登錄
 
友情鏈接  
地址:北京安定門外安貞醫(yī)院內北京生物醫(yī)學工程編輯部
電話:010-64456508  傳真:010-64456661
電子郵箱:[email protected]